/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm with a custom universe and benchmark, both using the same security.
///
public class CustomUniverseWithBenchmarkRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private const int ExpectedLeverage = 2;
private Symbol _spy;
private decimal _previousBenchmarkValue;
private DateTime _previousTime;
private decimal _previousSecurityValue;
private bool _universeSelected;
private bool _onDataWasCalled;
private int _benchmarkPriceDidNotChange;
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2013, 10, 4);
SetEndDate(2013, 10, 11);
// Hour resolution
_spy = AddEquity("SPY", Resolution.Hour).Symbol;
// Minute resolution
AddUniverse("my-universe", x =>
{
if(x.Day % 2 == 0)
{
_universeSelected = true;
return new List {"SPY"};
}
_universeSelected = false;
return Enumerable.Empty();
}
);
// internal daily resolution
SetBenchmark("SPY");
Symbol symbol;
if (!SymbolCache.TryGetSymbol("SPY", out symbol)
|| !ReferenceEquals(_spy, symbol))
{
throw new RegressionTestException("We expected 'SPY' to be added to the Symbol cache," +
" since the algorithm is also using it");
}
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
var security = Securities[_spy];
_onDataWasCalled = true;
var bar = slice.Bars.Values.Single();
if (_universeSelected)
{
if (bar.IsFillForward
|| bar.Period != TimeSpan.FromMinutes(1))
{
// bar should always be the Minute resolution one here
throw new RegressionTestException("Unexpected Bar error");
}
if (_previousTime.Date == slice.Time.Date
&& (slice.Time - _previousTime) != TimeSpan.FromMinutes(1))
{
throw new RegressionTestException("For the same date expected data updates every 1 minute");
}
}
else
{
if (slice.Time.Minute == 0
&& _previousSecurityValue == security.Price)
{
throw new RegressionTestException($"Security Price error. Price should change every new hour");
}
if (slice.Time.Minute != 0
&& _previousSecurityValue != security.Price
&& security.IsTradable)
{
throw new RegressionTestException($"Security Price error. Price should not change every minute");
}
}
_previousSecurityValue = security.Price;
// assert benchmark updates only on date change
var currentValue = Benchmark.Evaluate(slice.Time);
if (_previousTime.Hour == slice.Time.Hour)
{
if (currentValue != _previousBenchmarkValue)
{
throw new RegressionTestException($"Benchmark value error - expected: {_previousBenchmarkValue} {_previousTime}, actual: {currentValue} {slice.Time}. " +
"Benchmark value should only change when there is a change in hours");
}
}
else
{
if (slice.Time.Minute == 0)
{
if (currentValue == _previousBenchmarkValue)
{
_benchmarkPriceDidNotChange++;
// there are two consecutive equal data points so we give it some room
if (_benchmarkPriceDidNotChange > 1)
{
throw new RegressionTestException($"Benchmark value error - expected a new value, current {currentValue} {slice.Time}" +
"Benchmark value should change when there is a change in hours");
}
}
else
{
_benchmarkPriceDidNotChange = 0;
}
}
}
_previousBenchmarkValue = currentValue;
_previousTime = slice.Time;
// assert algorithm security is the correct one - not the internal one
if (security.Leverage != ExpectedLeverage)
{
throw new RegressionTestException($"Leverage error - expected: {ExpectedLeverage}, actual: {security.Leverage}");
}
}
public override void OnEndOfAlgorithm()
{
if (!_onDataWasCalled)
{
throw new RegressionTestException("OnData was not called");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 3500;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100000"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "-2.094"},
{"Tracking Error", "0.175"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", ""},
{"Portfolio Turnover", "0%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}