/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using Newtonsoft.Json;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Portfolio.SignalExports;
using QuantConnect.Api;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using System;
using System.Linq;
using System.Net.Http;
using System.Net.Http.Json;
using System.Text;
namespace QuantConnect.Algorithm.CSharp
{
///
/// This algorithm sends a list of portfolio targets to custom endpoint
///
///
///
///
public class CustomSignalExportDemonstrationAlgorithm : QCAlgorithm
{
///
/// Initialize the date and add all equity symbols present
///
public override void Initialize()
{
SetStartDate(2013, 10, 07);
SetEndDate(2013, 10, 11);
/// Our custom signal export accepts all asset types
AddEquity("SPY", Resolution.Second);
AddCrypto("BTCUSD", Resolution.Second);
AddForex("EURUSD", Resolution.Second);
AddFutureContract(QuantConnect.Symbol.CreateFuture("ES", Market.CME, new DateTime(2023, 12, 15), null));
AddOptionContract(QuantConnect.Symbol.CreateOption("SPY", Market.USA, OptionStyle.American, OptionRight.Call, 130, new DateTime(2023, 9, 1)));
// Set CustomSignalExport signal export provider.
SignalExport.AddSignalExportProvider(new CustomSignalExport());
}
///
/// Buy and hold EURUSD and SPY
///
///
public override void OnData(Slice slice)
{
foreach (var ticker in new[] { "SPY", "EURUSD", "BTCUSD" })
{
if (!Portfolio[ticker].Invested && Securities[ticker].HasData)
{
SetHoldings(ticker, 0.5m);
}
}
}
}
internal class CustomSignalExport : ISignalExportTarget
{
private readonly Uri _requestUri = new ("http://localhost:5000/");
private readonly HttpClient _httpClient = new();
public bool Send(SignalExportTargetParameters parameters)
{
object SimplePayload(PortfolioTarget target)
{
var newTarget = PortfolioTarget.Percent(parameters.Algorithm, target.Symbol, target.Quantity);
return new { symbol = newTarget.Symbol.Value, quantity = newTarget.Quantity };
};
var message = JsonConvert.SerializeObject(parameters.Targets.Select(SimplePayload));
using var httpMessage = new StringContent(message, Encoding.UTF8, "application/json");
using HttpResponseMessage response = _httpClient.PostAsync(_requestUri, httpMessage).Result;
var result = response.Content.ReadFromJsonAsync().Result;
parameters.Algorithm.Log($"Send #{parameters.Targets.Count} targets. Success: {result.Success}");
return result.Success;
}
public void Dispose() => _httpClient.Dispose();
}
}
/*
# To test the algorithm, you can create a simple Python Flask application (app.py) and run flask
# $ flask --app app run
# app.py:
from flask import Flask, request, jsonify
from json import loads
app = Flask(__name__)
@app.post('/')
def handle_positions():
result = loads(request.data)
print(result)
return jsonify({'success': True,'message': f'{len(result)} positions received'})
if __name__ == '__main__':
app.run(debug=True)
*/