/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Data; using QuantConnect.Orders; using QuantConnect.Orders.Fills; using QuantConnect.Securities; using QuantConnect.Interfaces; using System; using System.Collections.Generic; namespace QuantConnect.Algorithm.CSharp { /// /// Basic template algorithm that implements a fill model with partial fills /// /// /// public class CustomPartialFillModelAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _spy; private SecurityHolding _holdings; public override void Initialize() { SetStartDate(2019, 1, 1); SetEndDate(2019, 3, 1); var equity = AddEquity("SPY", Resolution.Hour); _spy = equity.Symbol; _holdings = equity.Holdings; // Set the fill model equity.SetFillModel(new CustomPartialFillModel(this)); } public override void OnData(Slice slice) { var openOrders = Transactions.GetOpenOrders(_spy); if (openOrders.Count != 0) return; if (Time.Day > 10 && _holdings.Quantity <= 0) { MarketOrder(_spy, 105, true); } else if (Time.Day > 20 && _holdings.Quantity >= 0) { MarketOrder(_spy, -100, true); } } /// /// Implements a custom fill model that inherit from FillModel. Override the MarketFill method to simulate partially fill orders /// internal class CustomPartialFillModel : FillModel { private readonly QCAlgorithm _algorithm; private readonly Dictionary _absoluteRemainingByOrderId; public CustomPartialFillModel(QCAlgorithm algorithm) : base() { _algorithm = algorithm; _absoluteRemainingByOrderId = new Dictionary(); } public override OrderEvent MarketFill(Security asset, MarketOrder order) { decimal absoluteRemaining; if (!_absoluteRemainingByOrderId.TryGetValue(order.Id, out absoluteRemaining)) { absoluteRemaining = order.AbsoluteQuantity; } // Create the object var fill = base.MarketFill(asset, order); // Set the fill amount fill.FillQuantity = Math.Sign(order.Quantity) * 10m; if (Math.Min(Math.Abs(fill.FillQuantity), absoluteRemaining) == absoluteRemaining) { fill.FillQuantity = Math.Sign(order.Quantity) * absoluteRemaining; fill.Status = OrderStatus.Filled; _absoluteRemainingByOrderId.Remove(order.Id); } else { fill.Status = OrderStatus.PartiallyFilled; _absoluteRemainingByOrderId[order.Id] = absoluteRemaining - Math.Abs(fill.FillQuantity); var price = fill.FillPrice; //_algorithm.Debug($"{_algorithm.Time} - Partial Fill - Remaining {_absoluteRemainingByOrderId[order.Id]} Price - {price}"); } return fill; } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 582; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "24"}, {"Average Win", "0.02%"}, {"Average Loss", "-0.01%"}, {"Compounding Annual Return", "3.413%"}, {"Drawdown", "0.600%"}, {"Expectancy", "0.426"}, {"Start Equity", "100000"}, {"End Equity", "100550.15"}, {"Net Profit", "0.550%"}, {"Sharpe Ratio", "-0.416"}, {"Sortino Ratio", "-0.435"}, {"Probabilistic Sharpe Ratio", "61.217%"}, {"Loss Rate", "44%"}, {"Win Rate", "56%"}, {"Profit-Loss Ratio", "1.52"}, {"Alpha", "-0.037"}, {"Beta", "0.05"}, {"Annual Standard Deviation", "0.015"}, {"Annual Variance", "0"}, {"Information Ratio", "-5.465"}, {"Tracking Error", "0.114"}, {"Treynor Ratio", "-0.123"}, {"Total Fees", "$24.00"}, {"Estimated Strategy Capacity", "$89000000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "10.59%"}, {"Drawdown Recovery", "1"}, {"OrderListHash", "aa14b4a6f4eb5907cb188ed462c14389"} }; } }