/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Data;
using QuantConnect.Orders;
using QuantConnect.Orders.Fills;
using QuantConnect.Securities;
using QuantConnect.Interfaces;
using System;
using System.Collections.Generic;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Basic template algorithm that implements a fill model with partial fills
///
///
///
public class CustomPartialFillModelAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _spy;
private SecurityHolding _holdings;
public override void Initialize()
{
SetStartDate(2019, 1, 1);
SetEndDate(2019, 3, 1);
var equity = AddEquity("SPY", Resolution.Hour);
_spy = equity.Symbol;
_holdings = equity.Holdings;
// Set the fill model
equity.SetFillModel(new CustomPartialFillModel(this));
}
public override void OnData(Slice slice)
{
var openOrders = Transactions.GetOpenOrders(_spy);
if (openOrders.Count != 0) return;
if (Time.Day > 10 && _holdings.Quantity <= 0)
{
MarketOrder(_spy, 105, true);
}
else if (Time.Day > 20 && _holdings.Quantity >= 0)
{
MarketOrder(_spy, -100, true);
}
}
///
/// Implements a custom fill model that inherit from FillModel. Override the MarketFill method to simulate partially fill orders
///
internal class CustomPartialFillModel : FillModel
{
private readonly QCAlgorithm _algorithm;
private readonly Dictionary _absoluteRemainingByOrderId;
public CustomPartialFillModel(QCAlgorithm algorithm)
: base()
{
_algorithm = algorithm;
_absoluteRemainingByOrderId = new Dictionary();
}
public override OrderEvent MarketFill(Security asset, MarketOrder order)
{
decimal absoluteRemaining;
if (!_absoluteRemainingByOrderId.TryGetValue(order.Id, out absoluteRemaining))
{
absoluteRemaining = order.AbsoluteQuantity;
}
// Create the object
var fill = base.MarketFill(asset, order);
// Set the fill amount
fill.FillQuantity = Math.Sign(order.Quantity) * 10m;
if (Math.Min(Math.Abs(fill.FillQuantity), absoluteRemaining) == absoluteRemaining)
{
fill.FillQuantity = Math.Sign(order.Quantity) * absoluteRemaining;
fill.Status = OrderStatus.Filled;
_absoluteRemainingByOrderId.Remove(order.Id);
}
else
{
fill.Status = OrderStatus.PartiallyFilled;
_absoluteRemainingByOrderId[order.Id] = absoluteRemaining - Math.Abs(fill.FillQuantity);
var price = fill.FillPrice;
//_algorithm.Debug($"{_algorithm.Time} - Partial Fill - Remaining {_absoluteRemainingByOrderId[order.Id]} Price - {price}");
}
return fill;
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 582;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "24"},
{"Average Win", "0.02%"},
{"Average Loss", "-0.01%"},
{"Compounding Annual Return", "3.413%"},
{"Drawdown", "0.600%"},
{"Expectancy", "0.426"},
{"Start Equity", "100000"},
{"End Equity", "100550.15"},
{"Net Profit", "0.550%"},
{"Sharpe Ratio", "-0.416"},
{"Sortino Ratio", "-0.435"},
{"Probabilistic Sharpe Ratio", "61.217%"},
{"Loss Rate", "44%"},
{"Win Rate", "56%"},
{"Profit-Loss Ratio", "1.52"},
{"Alpha", "-0.037"},
{"Beta", "0.05"},
{"Annual Standard Deviation", "0.015"},
{"Annual Variance", "0"},
{"Information Ratio", "-5.465"},
{"Tracking Error", "0.114"},
{"Treynor Ratio", "-0.123"},
{"Total Fees", "$24.00"},
{"Estimated Strategy Capacity", "$89000000.00"},
{"Lowest Capacity Asset", "SPY R735QTJ8XC9X"},
{"Portfolio Turnover", "10.59%"},
{"Drawdown Recovery", "1"},
{"OrderListHash", "aa14b4a6f4eb5907cb188ed462c14389"}
};
}
}