/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
using System.Collections.Generic;
using QuantConnect.Securities.Option;
using QuantConnect.Orders.OptionExercise;
using QuantConnect.Orders;
using QuantConnect.Orders.Fees;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm asserting we can specify a custom option exercise model
///
public class CustomOptionExerciseModelRegressionAlgorithm : OptionAssignmentRegressionAlgorithm
{
public override void Initialize()
{
SetSecurityInitializer((security) =>
{
var option = security as Option;
option?.SetOptionExerciseModel(new CustomOptionExerciseModel());
});
base.Initialize();
}
private class CustomOptionExerciseModel : DefaultExerciseModel
{
public override IEnumerable OptionExercise(Option option, OptionExerciseOrder order)
{
yield return new OrderEvent(order.Id,
option.Symbol,
option.LocalTime.ConvertToUtc(option.Exchange.TimeZone),
OrderStatus.Filled,
Extensions.GetOrderDirection(order.Quantity),
0.0m,
order.Quantity,
OrderFee.Zero,
"Tag")
{
IsAssignment = false
};
}
}
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public override List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public override Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "32"},
{"Average Win", "6.14%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "26116903817855100000000000000%"},
{"Drawdown", "0.500%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "257114"},
{"Net Profit", "157.114%"},
{"Sharpe Ratio", "107.743"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "95.713%"},
{"Loss Rate", "0%"},
{"Win Rate", "100%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "60.088"},
{"Beta", "-19.374"},
{"Annual Standard Deviation", "0.593"},
{"Annual Variance", "0.351"},
{"Information Ratio", "106.234"},
{"Tracking Error", "0.603"},
{"Treynor Ratio", "-3.295"},
{"Total Fees", "$16.00"},
{"Estimated Strategy Capacity", "$87000.00"},
{"Lowest Capacity Asset", "GOOCV 305RBQ20WHPNQ|GOOCV VP83T1ZUHROL"},
{"Portfolio Turnover", "10.93%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "8133cb99a1a9f9e9335bc98def3cc624"}
};
}
}