/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ using System.Collections.Generic; using QuantConnect.Securities.Option; using QuantConnect.Orders.OptionExercise; using QuantConnect.Orders; using QuantConnect.Orders.Fees; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm asserting we can specify a custom option exercise model /// public class CustomOptionExerciseModelRegressionAlgorithm : OptionAssignmentRegressionAlgorithm { public override void Initialize() { SetSecurityInitializer((security) => { var option = security as Option; option?.SetOptionExerciseModel(new CustomOptionExerciseModel()); }); base.Initialize(); } private class CustomOptionExerciseModel : DefaultExerciseModel { public override IEnumerable OptionExercise(Option option, OptionExerciseOrder order) { yield return new OrderEvent(order.Id, option.Symbol, option.LocalTime.ConvertToUtc(option.Exchange.TimeZone), OrderStatus.Filled, Extensions.GetOrderDirection(order.Quantity), 0.0m, order.Quantity, OrderFee.Zero, "Tag") { IsAssignment = false }; } } /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public override List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public override Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "32"}, {"Average Win", "6.14%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "26116903817855100000000000000%"}, {"Drawdown", "0.500%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "257114"}, {"Net Profit", "157.114%"}, {"Sharpe Ratio", "107.743"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "95.713%"}, {"Loss Rate", "0%"}, {"Win Rate", "100%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "60.088"}, {"Beta", "-19.374"}, {"Annual Standard Deviation", "0.593"}, {"Annual Variance", "0.351"}, {"Information Ratio", "106.234"}, {"Tracking Error", "0.603"}, {"Treynor Ratio", "-3.295"}, {"Total Fees", "$16.00"}, {"Estimated Strategy Capacity", "$87000.00"}, {"Lowest Capacity Asset", "GOOCV 305RBQ20WHPNQ|GOOCV VP83T1ZUHROL"}, {"Portfolio Turnover", "10.93%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "8133cb99a1a9f9e9335bc98def3cc624"} }; } }