/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Interfaces;
using QuantConnect.Securities;
using System.Collections.Generic;
using QuantConnect.Data;
using QuantConnect.Orders;
using System;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Demonstration of using custom margin interest rate model in backtesting.
///
///
public class CustomMarginInterestRateModelAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _spy;
private decimal _cashAfterOrder;
public override void Initialize()
{
SetStartDate(2013, 10, 01);
SetEndDate(2013, 10, 31);
var security = AddEquity("SPY", Resolution.Hour);
_spy = security.Symbol;
// set the margin interest rate model
security.SetMarginInterestRateModel(new CustomMarginInterestRateModel());
}
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
SetHoldings(_spy, 1);
}
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
if (orderEvent.Status == OrderStatus.Filled)
{
_cashAfterOrder = Portfolio.Cash;
}
}
public override void OnEndOfAlgorithm()
{
var security = Securities[_spy];
var marginInterestRateModel = security.MarginInterestRateModel as CustomMarginInterestRateModel;
if (marginInterestRateModel == null)
{
throw new RegressionTestException("CustomMarginInterestRateModel was not set");
}
if (marginInterestRateModel.CallCount == 0)
{
throw new RegressionTestException("CustomMarginInterestRateModel was not called");
}
var expectedCash = _cashAfterOrder * (decimal)Math.Pow(1 + (double)marginInterestRateModel.InterestRate, marginInterestRateModel.CallCount);
// add a tolerance since using Math.Pow(double, double) given the lack of a decimal overload
if (Math.Abs(Portfolio.Cash - expectedCash) > 1e-10m)
{
throw new RegressionTestException($"Expected cash {expectedCash} but got {Portfolio.Cash}");
}
}
public class CustomMarginInterestRateModel : IMarginInterestRateModel
{
public decimal InterestRate { get; } = 0.01m;
public int CallCount { get; private set; }
public void ApplyMarginInterestRate(MarginInterestRateParameters marginInterestRateParameters)
{
var security = marginInterestRateParameters.Security;
var positionValue = security.Holdings.GetQuantityValue(security.Holdings.Quantity);
if (positionValue.Amount > 0)
{
positionValue.Cash.AddAmount(InterestRate * positionValue.Cash.Amount);
CallCount++;
}
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 330;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "93.409%"},
{"Drawdown", "2.400%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "105698.63"},
{"Net Profit", "5.699%"},
{"Sharpe Ratio", "4.701"},
{"Sortino Ratio", "9.153"},
{"Probabilistic Sharpe Ratio", "85.653%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.145"},
{"Beta", "0.998"},
{"Annual Standard Deviation", "0.108"},
{"Annual Variance", "0.012"},
{"Information Ratio", "28.436"},
{"Tracking Error", "0.005"},
{"Treynor Ratio", "0.506"},
{"Total Fees", "$3.43"},
{"Estimated Strategy Capacity", "$150000000.00"},
{"Lowest Capacity Asset", "SPY R735QTJ8XC9X"},
{"Portfolio Turnover", "3.19%"},
{"Drawdown Recovery", "8"},
{"OrderListHash", "c0205e9d3d1bfdee958fecccb36413ec"}
};
}
}