/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Interfaces; using QuantConnect.Securities; using System.Collections.Generic; using QuantConnect.Data; using QuantConnect.Orders; using System; namespace QuantConnect.Algorithm.CSharp { /// /// Demonstration of using custom margin interest rate model in backtesting. /// /// public class CustomMarginInterestRateModelAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _spy; private decimal _cashAfterOrder; public override void Initialize() { SetStartDate(2013, 10, 01); SetEndDate(2013, 10, 31); var security = AddEquity("SPY", Resolution.Hour); _spy = security.Symbol; // set the margin interest rate model security.SetMarginInterestRateModel(new CustomMarginInterestRateModel()); } public override void OnData(Slice slice) { if (!Portfolio.Invested) { SetHoldings(_spy, 1); } } public override void OnOrderEvent(OrderEvent orderEvent) { if (orderEvent.Status == OrderStatus.Filled) { _cashAfterOrder = Portfolio.Cash; } } public override void OnEndOfAlgorithm() { var security = Securities[_spy]; var marginInterestRateModel = security.MarginInterestRateModel as CustomMarginInterestRateModel; if (marginInterestRateModel == null) { throw new RegressionTestException("CustomMarginInterestRateModel was not set"); } if (marginInterestRateModel.CallCount == 0) { throw new RegressionTestException("CustomMarginInterestRateModel was not called"); } var expectedCash = _cashAfterOrder * (decimal)Math.Pow(1 + (double)marginInterestRateModel.InterestRate, marginInterestRateModel.CallCount); // add a tolerance since using Math.Pow(double, double) given the lack of a decimal overload if (Math.Abs(Portfolio.Cash - expectedCash) > 1e-10m) { throw new RegressionTestException($"Expected cash {expectedCash} but got {Portfolio.Cash}"); } } public class CustomMarginInterestRateModel : IMarginInterestRateModel { public decimal InterestRate { get; } = 0.01m; public int CallCount { get; private set; } public void ApplyMarginInterestRate(MarginInterestRateParameters marginInterestRateParameters) { var security = marginInterestRateParameters.Security; var positionValue = security.Holdings.GetQuantityValue(security.Holdings.Quantity); if (positionValue.Amount > 0) { positionValue.Cash.AddAmount(InterestRate * positionValue.Cash.Amount); CallCount++; } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 330; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "93.409%"}, {"Drawdown", "2.400%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "105698.63"}, {"Net Profit", "5.699%"}, {"Sharpe Ratio", "4.701"}, {"Sortino Ratio", "9.153"}, {"Probabilistic Sharpe Ratio", "85.653%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0.145"}, {"Beta", "0.998"}, {"Annual Standard Deviation", "0.108"}, {"Annual Variance", "0.012"}, {"Information Ratio", "28.436"}, {"Tracking Error", "0.005"}, {"Treynor Ratio", "0.506"}, {"Total Fees", "$3.43"}, {"Estimated Strategy Capacity", "$150000000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "3.19%"}, {"Drawdown Recovery", "8"}, {"OrderListHash", "c0205e9d3d1bfdee958fecccb36413ec"} }; } }