/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Globalization; using System.Collections.Generic; using QuantConnect.Data; using QuantConnect.Benchmarks; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm to demonstrate the use of SetBenchmark() with custom data /// public class CustomDataBenchmarkRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { public override void Initialize() { SetStartDate(2017, 8, 18); SetEndDate(2017, 8, 21); SetCash(100000); AddEquity("SPY", Resolution.Hour); var customSymbol = AddData("ExampleCustomData", Resolution.Hour).Symbol; SetBenchmark(customSymbol); } public override void OnData(Slice slice) { if (!Portfolio.Invested) { SetHoldings("SPY", 1); } } public override void OnEndOfAlgorithm() { var securityBenchmark = (SecurityBenchmark)Benchmark; if (securityBenchmark.Security.Price == 0) { throw new RegressionTestException("Security benchmark price was not expected to be zero"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 114; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "29.610%"}, {"Drawdown", "0.600%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100281.67"}, {"Net Profit", "0.282%"}, {"Sharpe Ratio", "7.023"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0.094"}, {"Beta", "-0.016"}, {"Annual Standard Deviation", "0.007"}, {"Annual Variance", "0"}, {"Information Ratio", "-6.047"}, {"Tracking Error", "0.439"}, {"Treynor Ratio", "-3.13"}, {"Total Fees", "$2.21"}, {"Estimated Strategy Capacity", "$180000000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "24.86%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "8c07dafc84c73401fa0c7709b6baf802"} }; public class ExampleCustomData : BaseData { public decimal Open { get; set; } public decimal High { get; set; } public decimal Low { get; set; } public decimal Close { get; set; } public override SubscriptionDataSource GetSource(SubscriptionDataConfig config, DateTime date, bool isLiveMode) { var source = "https://www.dl.dropboxusercontent.com/s/d83xvd7mm9fzpk0/path_to_my_csv_data.csv?dl=0"; return new SubscriptionDataSource(source, SubscriptionTransportMedium.RemoteFile, FileFormat.Csv); } public override BaseData Reader(SubscriptionDataConfig config, string line, DateTime date, bool isLiveMode) { var csv = line.Split(","); var data = new ExampleCustomData() { Symbol = config.Symbol, Time = DateTime.ParseExact(csv[0], DateFormat.DB, CultureInfo.InvariantCulture).AddHours(20), Value = csv[4].ToDecimal(), Open = csv[1].ToDecimal(), High = csv[2].ToDecimal(), Low = csv[3].ToDecimal(), Close = csv[4].ToDecimal() }; return data; } } } }