/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Globalization;
using System.Collections.Generic;
using QuantConnect.Data;
using QuantConnect.Benchmarks;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm to demonstrate the use of SetBenchmark() with custom data
///
public class CustomDataBenchmarkRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
public override void Initialize()
{
SetStartDate(2017, 8, 18);
SetEndDate(2017, 8, 21);
SetCash(100000);
AddEquity("SPY", Resolution.Hour);
var customSymbol = AddData("ExampleCustomData", Resolution.Hour).Symbol;
SetBenchmark(customSymbol);
}
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
SetHoldings("SPY", 1);
}
}
public override void OnEndOfAlgorithm()
{
var securityBenchmark = (SecurityBenchmark)Benchmark;
if (securityBenchmark.Security.Price == 0)
{
throw new RegressionTestException("Security benchmark price was not expected to be zero");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 114;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "29.610%"},
{"Drawdown", "0.600%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100281.67"},
{"Net Profit", "0.282%"},
{"Sharpe Ratio", "7.023"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.094"},
{"Beta", "-0.016"},
{"Annual Standard Deviation", "0.007"},
{"Annual Variance", "0"},
{"Information Ratio", "-6.047"},
{"Tracking Error", "0.439"},
{"Treynor Ratio", "-3.13"},
{"Total Fees", "$2.21"},
{"Estimated Strategy Capacity", "$180000000.00"},
{"Lowest Capacity Asset", "SPY R735QTJ8XC9X"},
{"Portfolio Turnover", "24.86%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "8c07dafc84c73401fa0c7709b6baf802"}
};
public class ExampleCustomData : BaseData
{
public decimal Open { get; set; }
public decimal High { get; set; }
public decimal Low { get; set; }
public decimal Close { get; set; }
public override SubscriptionDataSource GetSource(SubscriptionDataConfig config, DateTime date, bool isLiveMode)
{
var source = "https://www.dl.dropboxusercontent.com/s/d83xvd7mm9fzpk0/path_to_my_csv_data.csv?dl=0";
return new SubscriptionDataSource(source, SubscriptionTransportMedium.RemoteFile, FileFormat.Csv);
}
public override BaseData Reader(SubscriptionDataConfig config, string line, DateTime date, bool isLiveMode)
{
var csv = line.Split(",");
var data = new ExampleCustomData()
{
Symbol = config.Symbol,
Time = DateTime.ParseExact(csv[0], DateFormat.DB, CultureInfo.InvariantCulture).AddHours(20),
Value = csv[4].ToDecimal(),
Open = csv[1].ToDecimal(),
High = csv[2].ToDecimal(),
Low = csv[3].ToDecimal(),
Close = csv[4].ToDecimal()
};
return data;
}
}
}
}