/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using QuantConnect.Data;
using QuantConnect.Orders;
using QuantConnect.Interfaces;
using QuantConnect.Brokerages;
using QuantConnect.Data.Market;
using System.Collections.Generic;
using QuantConnect.Securities.CryptoFuture;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Daily regression algorithm trading ADAUSDT binance futures long and short asserting the behavior
///
public class CryptoFutureHourlyMarginInterestRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Dictionary _interestPerSymbol = new();
private decimal _amountAfterTrade;
private CryptoFuture _adaUsdt;
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
Initialize(Resolution.Hour);
}
protected virtual void Initialize(Resolution resolution)
{
SetStartDate(2022, 12, 12);
SetEndDate(2022, 12, 13);
SetTimeZone(NodaTime.DateTimeZone.Utc);
SetBrokerageModel(BrokerageName.BinanceCoinFutures, AccountType.Margin);
_adaUsdt = AddCryptoFuture("ADAUSDT", resolution);
// Default USD cash, set 1M but it wont be used
SetCash(1000000);
// the amount of USDT we need to hold to trade 'ADAUSDT'
_adaUsdt.QuoteCurrency.SetAmount(200);
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
var interestRates = slice.Get();
foreach (var interestRate in interestRates)
{
_interestPerSymbol.TryGetValue(interestRate.Key, out var count);
_interestPerSymbol[interestRate.Key] = ++count;
var cachedInterestRate = Securities[interestRate.Key].Cache.GetData();
if (cachedInterestRate != interestRate.Value)
{
throw new RegressionTestException($"Unexpected cached margin interest rate for {interestRate.Key}!");
}
}
if(interestRates.Count != slice.MarginInterestRates.Count)
{
throw new RegressionTestException($"Unexpected cached margin interest rate data!");
}
if (Portfolio.Invested)
{
return;
}
Buy(_adaUsdt.Symbol, 1000);
_amountAfterTrade = Portfolio.CashBook["USDT"].Amount;
}
public override void OnEndOfAlgorithm()
{
if (!_interestPerSymbol.TryGetValue(_adaUsdt.Symbol, out var count) || count != 1)
{
throw new RegressionTestException($"Unexpected interest rate count {count}");
}
// negative because we are long. Rate * Value * Application Count
var expectedFundingRateDifference = - (0.0001m * _adaUsdt.Holdings.HoldingsValue * 3);
var finalCash = Portfolio.CashBook["USDT"].Amount;
if (Math.Abs(finalCash - (_amountAfterTrade + expectedFundingRateDifference)) > Math.Abs(expectedFundingRateDifference * 0.05m))
{
throw new RegressionTestException($"Unexpected interest rate count {Portfolio.CashBook["USDT"].Amount}");
}
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
Debug(Time + " " + orderEvent);
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public virtual long DataPoints => 50;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public virtual Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "1000200"},
{"End Equity", "1000207.90"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.15"},
{"Estimated Strategy Capacity", "$330000000.00"},
{"Lowest Capacity Asset", "ADAUSDT 18R"},
{"Portfolio Turnover", "0.02%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "f3d491f943932e64bc38b85d74eb5129"}
};
}
}