/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using QuantConnect.Data; using QuantConnect.Orders; using QuantConnect.Interfaces; using QuantConnect.Brokerages; using QuantConnect.Data.Market; using System.Collections.Generic; using QuantConnect.Securities.CryptoFuture; namespace QuantConnect.Algorithm.CSharp { /// /// Daily regression algorithm trading ADAUSDT binance futures long and short asserting the behavior /// public class CryptoFutureHourlyMarginInterestRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Dictionary _interestPerSymbol = new(); private decimal _amountAfterTrade; private CryptoFuture _adaUsdt; /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { Initialize(Resolution.Hour); } protected virtual void Initialize(Resolution resolution) { SetStartDate(2022, 12, 12); SetEndDate(2022, 12, 13); SetTimeZone(NodaTime.DateTimeZone.Utc); SetBrokerageModel(BrokerageName.BinanceCoinFutures, AccountType.Margin); _adaUsdt = AddCryptoFuture("ADAUSDT", resolution); // Default USD cash, set 1M but it wont be used SetCash(1000000); // the amount of USDT we need to hold to trade 'ADAUSDT' _adaUsdt.QuoteCurrency.SetAmount(200); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { var interestRates = slice.Get(); foreach (var interestRate in interestRates) { _interestPerSymbol.TryGetValue(interestRate.Key, out var count); _interestPerSymbol[interestRate.Key] = ++count; var cachedInterestRate = Securities[interestRate.Key].Cache.GetData(); if (cachedInterestRate != interestRate.Value) { throw new RegressionTestException($"Unexpected cached margin interest rate for {interestRate.Key}!"); } } if(interestRates.Count != slice.MarginInterestRates.Count) { throw new RegressionTestException($"Unexpected cached margin interest rate data!"); } if (Portfolio.Invested) { return; } Buy(_adaUsdt.Symbol, 1000); _amountAfterTrade = Portfolio.CashBook["USDT"].Amount; } public override void OnEndOfAlgorithm() { if (!_interestPerSymbol.TryGetValue(_adaUsdt.Symbol, out var count) || count != 1) { throw new RegressionTestException($"Unexpected interest rate count {count}"); } // negative because we are long. Rate * Value * Application Count var expectedFundingRateDifference = - (0.0001m * _adaUsdt.Holdings.HoldingsValue * 3); var finalCash = Portfolio.CashBook["USDT"].Amount; if (Math.Abs(finalCash - (_amountAfterTrade + expectedFundingRateDifference)) > Math.Abs(expectedFundingRateDifference * 0.05m)) { throw new RegressionTestException($"Unexpected interest rate count {Portfolio.CashBook["USDT"].Amount}"); } } public override void OnOrderEvent(OrderEvent orderEvent) { Debug(Time + " " + orderEvent); } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public virtual long DataPoints => 50; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public virtual Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "1000200"}, {"End Equity", "1000207.90"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.15"}, {"Estimated Strategy Capacity", "$330000000.00"}, {"Lowest Capacity Asset", "ADAUSDT 18R"}, {"Portfolio Turnover", "0.02%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "f3d491f943932e64bc38b85d74eb5129"} }; } }