/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Linq; using QuantConnect.Data; using QuantConnect.Orders; using QuantConnect.Interfaces; using QuantConnect.Securities; using System.Collections.Generic; using QuantConnect.Securities.Future; using QuantConnect.Data.UniverseSelection; namespace QuantConnect.Algorithm.CSharp { /// /// Continuous Futures Regression algorithm. Asserting and showcasing the behavior of adding a continuous future /// public class ContinuousFutureRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private List _previousMappedContractSymbols = new(); private Symbol _currentMappedSymbol; private Future _continuousContract; private DateTime _lastMonth; /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(2013, 7, 1); SetEndDate(2014, 1, 1); _continuousContract = AddFuture(Futures.Indices.SP500EMini, dataNormalizationMode: DataNormalizationMode.BackwardsRatio, dataMappingMode: DataMappingMode.LastTradingDay, contractDepthOffset: 0 ); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { // we subtract a minute cause we can get data on the market close, from the previous minute if (!_continuousContract.Exchange.DateTimeIsOpen(Time.AddMinutes(-1))) { if (slice.Bars.Count > 0 || slice.QuoteBars.Count > 0) { throw new RegressionTestException($"We are getting data during closed market!"); } } var currentlyMappedSecurity = Securities[_continuousContract.Mapped]; if (slice.Keys.Count != 1) { throw new RegressionTestException($"We are getting data for more than one symbols! {string.Join(",", slice.Keys.Select(symbol => symbol))}"); } foreach (var changedEvent in slice.SymbolChangedEvents.Values) { if (changedEvent.Symbol == _continuousContract.Symbol) { _previousMappedContractSymbols.Add(Symbol(changedEvent.OldSymbol)); Log($"{Time} - SymbolChanged event: {changedEvent}"); if (_currentMappedSymbol == _continuousContract.Mapped) { throw new RegressionTestException($"Continuous contract current symbol did not change! {_continuousContract.Mapped}"); } var currentExpiration = changedEvent.Symbol.Underlying.ID.Date; var frontMonthExpiration = FuturesExpiryFunctions.FuturesExpiryFunction(_continuousContract.Symbol)(Time.AddMonths(1)); if (currentExpiration != frontMonthExpiration.Date) { throw new RegressionTestException($"Unexpected current mapped contract expiration {currentExpiration}" + $" @ {Time} it should be AT front month expiration {frontMonthExpiration}"); } } } if (_lastMonth.Month != Time.Month && currentlyMappedSecurity.HasData) { _lastMonth = Time; Log($"{Time}- {currentlyMappedSecurity.GetLastData()}"); if (Portfolio.Invested) { Liquidate(); } else { // This works because we set this contract as tradable, even if it's a canonical security Buy(currentlyMappedSecurity.Symbol, 1); } if(Time.Month == 1 && Time.Year == 2013) { var response = History(new[] { _continuousContract.Symbol }, 60 * 24 * 90); if (!response.Any()) { throw new RegressionTestException("Unexpected empty history response"); } } } _currentMappedSymbol = _continuousContract.Mapped; } public override void OnOrderEvent(OrderEvent orderEvent) { if (orderEvent.Status == OrderStatus.Filled) { Log($"{orderEvent}"); } } public override void OnSecuritiesChanged(SecurityChanges changes) { Debug($"{Time}-{changes}"); if (changes.AddedSecurities.Any(security => security.Symbol != _continuousContract.Symbol) || changes.RemovedSecurities.Any(security => security.Symbol != _continuousContract.Symbol)) { throw new RegressionTestException($"We got an unexpected security changes {changes}"); } } public override void OnEndOfAlgorithm() { var expectedMappingCounts = 2; if (_previousMappedContractSymbols.Count != expectedMappingCounts) { throw new RegressionTestException($"Unexpected symbol changed events: {_previousMappedContractSymbols.Count}, was expecting {expectedMappingCounts}"); } var delistedSecurities = _previousMappedContractSymbols .Select(x => Securities.Total.Single(sec => sec.Symbol == x)) .Where(x => x.Symbol.ID.Date < Time) .ToList(); var markedDelistedSecurities = delistedSecurities.Where(x => x.IsDelisted && !x.IsTradable).ToList(); if (markedDelistedSecurities.Count != delistedSecurities.Count) { throw new RegressionTestException($"Not all delisted contracts are properly market as delisted and non-tradable: " + $"only {markedDelistedSecurities.Count} are marked, was expecting {delistedSecurities.Count}"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 162575; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "4"}, {"Average Win", "0.84%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "3.380%"}, {"Drawdown", "1.600%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "101687.3"}, {"Net Profit", "1.687%"}, {"Sharpe Ratio", "0.605"}, {"Sortino Ratio", "0.202"}, {"Probabilistic Sharpe Ratio", "45.198%"}, {"Loss Rate", "0%"}, {"Win Rate", "100%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.013"}, {"Beta", "0.134"}, {"Annual Standard Deviation", "0.027"}, {"Annual Variance", "0.001"}, {"Information Ratio", "-2.687"}, {"Tracking Error", "0.075"}, {"Treynor Ratio", "0.121"}, {"Total Fees", "$6.45"}, {"Estimated Strategy Capacity", "$2600000000.00"}, {"Lowest Capacity Asset", "ES VMKLFZIH2MTD"}, {"Portfolio Turnover", "1.88%"}, {"Drawdown Recovery", "16"}, {"OrderListHash", "1973b0beb9bc5e618e0387d960553d7a"} }; } }