/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using QuantConnect.Securities;
using System.Collections.Generic;
using QuantConnect.Securities.Future;
using QuantConnect.Data.UniverseSelection;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Continuous Futures History Regression algorithm. Asserting and showcasing the behavior of adding a continuous future
///
public class ContinuousFutureHistoryRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Future _continuousContract;
private bool _warmedUp;
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2013, 10, 10);
SetEndDate(2013, 10, 11);
_continuousContract = AddFuture(Futures.Indices.SP500EMini,
dataNormalizationMode: DataNormalizationMode.BackwardsRatio,
dataMappingMode: DataMappingMode.OpenInterest,
contractDepthOffset: 1
);
SetWarmup(1, Resolution.Daily);
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
// ES has an expiration on december but because we are using 'contractDepthOffset: 1' we expect to use the next contract
if (_continuousContract.Mapped.ID.Date.Month != 3)
{
throw new RegressionTestException($"Unexpected mapped continuous contract future {_continuousContract.Mapped}");
}
if (IsWarmingUp)
{
// warm up data
_warmedUp = true;
if (!_continuousContract.HasData)
{
throw new RegressionTestException($"ContinuousContract did not get any data during warmup!");
}
var backMonthExpiration = slice.Keys.Single().Underlying.ID.Date;
var frontMonthExpiration = FuturesExpiryFunctions.FuturesExpiryFunction(_continuousContract.Symbol)(Time.AddMonths(1));
if (backMonthExpiration <= frontMonthExpiration.Date)
{
throw new RegressionTestException($"Unexpected current mapped contract expiration {backMonthExpiration}" +
$" @ {Time} it should be AFTER front month expiration {frontMonthExpiration}");
}
}
if (slice.Keys.Count != 1)
{
throw new RegressionTestException($"We are getting data for more than one symbols! {string.Join(",", slice.Keys.Select(symbol => symbol))}");
}
if (!Portfolio.Invested && !IsWarmingUp)
{
Buy(_continuousContract.Mapped, 1);
}
}
public override void OnEndOfAlgorithm()
{
if (!_warmedUp)
{
throw new RegressionTestException("Algorithm didn't warm up!");
}
}
public override void OnSecuritiesChanged(SecurityChanges changes)
{
Debug($"{Time}-{changes}");
if (changes.AddedSecurities.Any(security => security.Symbol != _continuousContract.Symbol)
|| changes.RemovedSecurities.Any(security => security.Symbol != _continuousContract.Symbol))
{
throw new RegressionTestException($"We got an unexpected security changes {changes}");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public virtual long DataPoints => 5469;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public virtual Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "101558.2"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$2.15"},
{"Estimated Strategy Capacity", "$130000000.00"},
{"Lowest Capacity Asset", "ES VP274HSU1AF5"},
{"Portfolio Turnover", "41.23%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "b9f8e1a0704c086944e5df07e0ab04d6"}
};
}
}