/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using QuantConnect.Data;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Test algorithm using a with test data
///
public class ConstituentsUniverseRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private readonly Symbol _appl = QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA);
private readonly Symbol _spy = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA);
private readonly Symbol _qqq = QuantConnect.Symbol.Create("QQQ", SecurityType.Equity, Market.USA);
private readonly Symbol _fb = QuantConnect.Symbol.Create("FB", SecurityType.Equity, Market.USA);
private int _step;
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2013, 10, 07); //Set Start Date
SetEndDate(2013, 10, 11); //Set End Date
SetCash(100000); //Set Strategy Cash
UniverseSettings.Resolution = Resolution.Daily;
var customUniverseSymbol = new Symbol(SecurityIdentifier.GenerateConstituentIdentifier(
"constituents-universe-qctest",
SecurityType.Equity,
Market.USA),
"constituents-universe-qctest");
AddUniverse(new ConstituentsUniverse(customUniverseSymbol, UniverseSettings));
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
_step++;
if (_step == 1)
{
if (!slice.ContainsKey(_qqq)
|| !slice.ContainsKey(_appl))
{
throw new RegressionTestException($"Unexpected symbols found, step: {_step}");
}
if (slice.Count != 2)
{
throw new RegressionTestException($"Unexpected data count, step: {_step}");
}
// AAPL will be deselected by the ConstituentsUniverse
// but it shouldn't be removed since we hold it
SetHoldings(_appl, 0.5);
}
else if (_step == 2)
{
if (!slice.ContainsKey(_appl))
{
throw new RegressionTestException($"Unexpected symbols found, step: {_step}");
}
if (slice.Count != 1)
{
throw new RegressionTestException($"Unexpected data count, step: {_step}");
}
// AAPL should now be released
// note: takes one extra loop because the order is executed on market open
Liquidate();
}
else if (_step == 3)
{
if (!slice.ContainsKey(_fb)
|| !slice.ContainsKey(_spy)
|| !slice.ContainsKey(_appl))
{
throw new RegressionTestException($"Unexpected symbols found, step: {_step}");
}
if (slice.Count != 3)
{
throw new RegressionTestException($"Unexpected data count, step: {_step}");
}
}
else if (_step == 4)
{
if (!slice.ContainsKey(_fb)
|| !slice.ContainsKey(_spy))
{
throw new RegressionTestException($"Unexpected symbols found, step: {_step}");
}
if (slice.Count != 2)
{
throw new RegressionTestException($"Unexpected data count, step: {_step}");
}
}
}
public override void OnEndOfAlgorithm()
{
// First selection is on the midnight of the 8th, start getting data from the 8th to the 11th
if (_step != 4)
{
throw new RegressionTestException($"Unexpected step count: {_step}");
}
}
public override void OnSecuritiesChanged(SecurityChanges changes)
{
foreach (var added in changes.AddedSecurities)
{
Log($"{Time} AddedSecurities {added}");
}
foreach (var removed in changes.RemovedSecurities)
{
Log($"{Time} RemovedSecurities {removed} {_step}");
// we are currently notifying the removal of AAPl twice,
// when deselected and when finally removed (since it stayed pending)
if (removed.Symbol == _appl && _step != 1 && _step != 2
|| removed.Symbol == _qqq && _step != 1)
{
throw new RegressionTestException($"Unexpected removal step count: {_step}");
}
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 50;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "2"},
{"Average Win", "0.68%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "70.501%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100684.53"},
{"Net Profit", "0.685%"},
{"Sharpe Ratio", "13.41"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "99.997%"},
{"Loss Rate", "0%"},
{"Win Rate", "100%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.235"},
{"Beta", "0.15"},
{"Annual Standard Deviation", "0.04"},
{"Annual Variance", "0.002"},
{"Information Ratio", "-7.587"},
{"Tracking Error", "0.19"},
{"Treynor Ratio", "3.546"},
{"Total Fees", "$32.77"},
{"Estimated Strategy Capacity", "$230000000.00"},
{"Lowest Capacity Asset", "AAPL R735QTJ8XC9X"},
{"Portfolio Turnover", "20.15%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d269ebced0796dde34f9eb775772e027"}
};
}
}