/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using QuantConnect.Data; using QuantConnect.Data.UniverseSelection; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// Test algorithm using a with test data /// public class ConstituentsUniverseRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private readonly Symbol _appl = QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA); private readonly Symbol _spy = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA); private readonly Symbol _qqq = QuantConnect.Symbol.Create("QQQ", SecurityType.Equity, Market.USA); private readonly Symbol _fb = QuantConnect.Symbol.Create("FB", SecurityType.Equity, Market.USA); private int _step; /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(2013, 10, 07); //Set Start Date SetEndDate(2013, 10, 11); //Set End Date SetCash(100000); //Set Strategy Cash UniverseSettings.Resolution = Resolution.Daily; var customUniverseSymbol = new Symbol(SecurityIdentifier.GenerateConstituentIdentifier( "constituents-universe-qctest", SecurityType.Equity, Market.USA), "constituents-universe-qctest"); AddUniverse(new ConstituentsUniverse(customUniverseSymbol, UniverseSettings)); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { _step++; if (_step == 1) { if (!slice.ContainsKey(_qqq) || !slice.ContainsKey(_appl)) { throw new RegressionTestException($"Unexpected symbols found, step: {_step}"); } if (slice.Count != 2) { throw new RegressionTestException($"Unexpected data count, step: {_step}"); } // AAPL will be deselected by the ConstituentsUniverse // but it shouldn't be removed since we hold it SetHoldings(_appl, 0.5); } else if (_step == 2) { if (!slice.ContainsKey(_appl)) { throw new RegressionTestException($"Unexpected symbols found, step: {_step}"); } if (slice.Count != 1) { throw new RegressionTestException($"Unexpected data count, step: {_step}"); } // AAPL should now be released // note: takes one extra loop because the order is executed on market open Liquidate(); } else if (_step == 3) { if (!slice.ContainsKey(_fb) || !slice.ContainsKey(_spy) || !slice.ContainsKey(_appl)) { throw new RegressionTestException($"Unexpected symbols found, step: {_step}"); } if (slice.Count != 3) { throw new RegressionTestException($"Unexpected data count, step: {_step}"); } } else if (_step == 4) { if (!slice.ContainsKey(_fb) || !slice.ContainsKey(_spy)) { throw new RegressionTestException($"Unexpected symbols found, step: {_step}"); } if (slice.Count != 2) { throw new RegressionTestException($"Unexpected data count, step: {_step}"); } } } public override void OnEndOfAlgorithm() { // First selection is on the midnight of the 8th, start getting data from the 8th to the 11th if (_step != 4) { throw new RegressionTestException($"Unexpected step count: {_step}"); } } public override void OnSecuritiesChanged(SecurityChanges changes) { foreach (var added in changes.AddedSecurities) { Log($"{Time} AddedSecurities {added}"); } foreach (var removed in changes.RemovedSecurities) { Log($"{Time} RemovedSecurities {removed} {_step}"); // we are currently notifying the removal of AAPl twice, // when deselected and when finally removed (since it stayed pending) if (removed.Symbol == _appl && _step != 1 && _step != 2 || removed.Symbol == _qqq && _step != 1) { throw new RegressionTestException($"Unexpected removal step count: {_step}"); } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 50; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "2"}, {"Average Win", "0.68%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "70.501%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100684.53"}, {"Net Profit", "0.685%"}, {"Sharpe Ratio", "13.41"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "99.997%"}, {"Loss Rate", "0%"}, {"Win Rate", "100%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0.235"}, {"Beta", "0.15"}, {"Annual Standard Deviation", "0.04"}, {"Annual Variance", "0.002"}, {"Information Ratio", "-7.587"}, {"Tracking Error", "0.19"}, {"Treynor Ratio", "3.546"}, {"Total Fees", "$32.77"}, {"Estimated Strategy Capacity", "$230000000.00"}, {"Lowest Capacity Asset", "AAPL R735QTJ8XC9X"}, {"Portfolio Turnover", "20.15%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d269ebced0796dde34f9eb775772e027"} }; } }