/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Data;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
using QuantConnect.Data.Market;
using System.Collections.Generic;
using System.Security.Principal;
using System;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm reproducing GH issue #8017
///
public class ConsolidatorAnIdentityIndicatorRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private readonly Dictionary _expectedValues = new Dictionary {
{ new DateTime(2013, 10, 7, 16, 0, 0), 144.75578537200m },
{ new DateTime(2013, 10, 8, 16, 0, 0), 143.07840976800m },
{ new DateTime(2013, 10, 9, 16, 0, 0), 143.15622616200m },
{ new DateTime(2013, 10, 10, 16, 0, 0), 146.32940578400m },
{ new DateTime(2013, 10, 11, 16, 0, 0), 147.24590998000m }
};
private Identity _identity;
private int _assertCount;
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2013, 10, 07);
SetEndDate(2013, 10, 11);
var symbol = AddEquity("SPY", Resolution.Minute).Symbol;
Consolidate(symbol, Resolution.Daily, (TradeBar bar) =>
{
_assertCount++;
if (_expectedValues[Time] != bar.Value)
{
throw new RegressionTestException($"{Time} - Consolidate unexpected current value: {bar.Value}");
}
});
_identity = Identity(symbol, Resolution.Daily);
_identity.Updated += _identity_Updated;
var min = MIN(symbol, 5, Resolution.Daily);
min.Updated += Min_Updated;
}
private void _identity_Updated(object sender, IndicatorDataPoint updated)
{
_assertCount++;
if (_expectedValues[Time] != _identity.Current.Value)
{
throw new RegressionTestException($"{Time} - _identity_Updated unexpected current value: {_identity.Current.Value}");
}
}
private void Min_Updated(object sender, IndicatorDataPoint updated)
{
_assertCount++;
if (_expectedValues[Time] != _identity.Current.Value)
{
throw new RegressionTestException($"{Time} - Min_Updated unexpected current value: {_identity.Current.Value}");
}
}
public override void OnEndOfAlgorithm()
{
if (_assertCount != 15)
{
throw new RegressionTestException($"Unexpected asserting count: {_assertCount}");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 3943;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100000"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "-8.91"},
{"Tracking Error", "0.223"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", ""},
{"Portfolio Turnover", "0%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}