/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Data; using QuantConnect.Indicators; using QuantConnect.Interfaces; using QuantConnect.Data.Market; using System.Collections.Generic; using System.Security.Principal; using System; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm reproducing GH issue #8017 /// public class ConsolidatorAnIdentityIndicatorRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private readonly Dictionary _expectedValues = new Dictionary { { new DateTime(2013, 10, 7, 16, 0, 0), 144.75578537200m }, { new DateTime(2013, 10, 8, 16, 0, 0), 143.07840976800m }, { new DateTime(2013, 10, 9, 16, 0, 0), 143.15622616200m }, { new DateTime(2013, 10, 10, 16, 0, 0), 146.32940578400m }, { new DateTime(2013, 10, 11, 16, 0, 0), 147.24590998000m } }; private Identity _identity; private int _assertCount; /// /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// public override void Initialize() { SetStartDate(2013, 10, 07); SetEndDate(2013, 10, 11); var symbol = AddEquity("SPY", Resolution.Minute).Symbol; Consolidate(symbol, Resolution.Daily, (TradeBar bar) => { _assertCount++; if (_expectedValues[Time] != bar.Value) { throw new RegressionTestException($"{Time} - Consolidate unexpected current value: {bar.Value}"); } }); _identity = Identity(symbol, Resolution.Daily); _identity.Updated += _identity_Updated; var min = MIN(symbol, 5, Resolution.Daily); min.Updated += Min_Updated; } private void _identity_Updated(object sender, IndicatorDataPoint updated) { _assertCount++; if (_expectedValues[Time] != _identity.Current.Value) { throw new RegressionTestException($"{Time} - _identity_Updated unexpected current value: {_identity.Current.Value}"); } } private void Min_Updated(object sender, IndicatorDataPoint updated) { _assertCount++; if (_expectedValues[Time] != _identity.Current.Value) { throw new RegressionTestException($"{Time} - Min_Updated unexpected current value: {_identity.Current.Value}"); } } public override void OnEndOfAlgorithm() { if (_assertCount != 15) { throw new RegressionTestException($"Unexpected asserting count: {_assertCount}"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 3943; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "0"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100000"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "-8.91"}, {"Tracking Error", "0.223"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.00"}, {"Estimated Strategy Capacity", "$0"}, {"Lowest Capacity Asset", ""}, {"Portfolio Turnover", "0%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"} }; } }