/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.Consolidators;
using QuantConnect.Data.Market;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
using QuantConnect.Securities;
using QuantConnect.Securities.Future;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm reproducing data type bugs in the Consolidate API. Related to GH 4205.
///
public class ConsolidateRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private List _consolidationCounts;
private List _expectedConsolidationCounts;
private List _smas;
private List _lastSmaUpdates;
private int _customDataConsolidatorCount;
private Future _future;
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(2020, 01, 05);
SetEndDate(2020, 01, 20);
var SP500 = QuantConnect.Symbol.Create(Futures.Indices.SP500EMini, SecurityType.Future, Market.CME);
var symbol = FuturesChain(SP500).First();
_future = AddFutureContract(symbol);
var tradableDatesCount = QuantConnect.Time.EachTradeableDayInTimeZone(_future.Exchange.Hours,
StartDate,
EndDate,
_future.Exchange.TimeZone,
false).Count();
_expectedConsolidationCounts = new(10);
Consolidate(symbol, time => new CalendarInfo(time.RoundDown(TimeSpan.FromDays(1)), TimeSpan.FromDays(1)),
bar => UpdateQuoteBar(bar, 0));
// The consolidator will respect the full 1 day bar span and will not consolidate the last tradable date,
// since scan will not be called at 202/01/21 12am
_expectedConsolidationCounts.Add(tradableDatesCount - 1);
Consolidate(symbol, time => new CalendarInfo(time.RoundDown(TimeSpan.FromDays(1)), TimeSpan.FromDays(1)),
TickType.Quote, bar => UpdateQuoteBar(bar, 1));
_expectedConsolidationCounts.Add(tradableDatesCount - 1);
Consolidate(symbol, TimeSpan.FromDays(1), bar => UpdateQuoteBar(bar, 2));
_expectedConsolidationCounts.Add(tradableDatesCount - 1);
Consolidate(symbol, Resolution.Daily, TickType.Quote, (Action)(bar => UpdateQuoteBar(bar, 3)));
_expectedConsolidationCounts.Add(tradableDatesCount);
Consolidate(symbol, TimeSpan.FromDays(1), bar => UpdateTradeBar(bar, 4));
_expectedConsolidationCounts.Add(tradableDatesCount - 1);
Consolidate(symbol, TimeSpan.FromDays(1), bar => UpdateTradeBar(bar, 5));
_expectedConsolidationCounts.Add(tradableDatesCount - 1);
// Test using abstract T types, through defining a 'BaseData' handler
Consolidate(symbol, Resolution.Daily, null, (Action)(bar => UpdateBar(bar, 6)));
_expectedConsolidationCounts.Add(tradableDatesCount);
Consolidate(symbol, TimeSpan.FromDays(1), null, (Action)(bar => UpdateBar(bar, 7)));
_expectedConsolidationCounts.Add(tradableDatesCount - 1);
Consolidate(symbol, TimeSpan.FromDays(1), (Action)(bar => UpdateBar(bar, 8)));
_expectedConsolidationCounts.Add(tradableDatesCount - 1);
_consolidationCounts = Enumerable.Repeat(0, _expectedConsolidationCounts.Count).ToList();
_smas = _consolidationCounts.Select(_ => new SimpleMovingAverage(10)).ToList();
_lastSmaUpdates = _consolidationCounts.Select(_ => DateTime.MinValue).ToList();
// custom data
var customSecurity = AddData("BTC", Resolution.Minute);
Consolidate(customSecurity.Symbol, TimeSpan.FromDays(1), bar => _customDataConsolidatorCount++);
try
{
Consolidate(customSecurity.Symbol, TimeSpan.FromDays(1), bar => { UpdateQuoteBar(bar, -1); });
throw new RegressionTestException($"Expected {nameof(ArgumentException)} to be thrown");
}
catch (ArgumentException)
{
// will try to use BaseDataConsolidator for which input is TradeBars not QuoteBars
}
}
private void UpdateBar(BaseData tradeBar, int position)
{
if (!(tradeBar is TradeBar))
{
throw new RegressionTestException("Expected a TradeBar");
}
_consolidationCounts[position]++;
_smas[position].Update(tradeBar.EndTime, tradeBar.Value);
_lastSmaUpdates[position] = tradeBar.EndTime;
}
private void UpdateTradeBar(TradeBar tradeBar, int position)
{
_consolidationCounts[position]++;
_smas[position].Update(tradeBar.EndTime, tradeBar.High);
_lastSmaUpdates[position] = tradeBar.EndTime;
}
private void UpdateQuoteBar(QuoteBar quoteBar, int position)
{
_consolidationCounts[position]++;
_smas[position].Update(quoteBar.EndTime, quoteBar.High);
_lastSmaUpdates[position] = quoteBar.EndTime;
}
public override void OnEndOfAlgorithm()
{
for (var i = 0; i < _consolidationCounts.Count; i++)
{
var consolidationCount = _consolidationCounts[i];
var expectedConsolidationCount = _expectedConsolidationCounts[i];
if (consolidationCount != expectedConsolidationCount)
{
throw new RegressionTestException($"Expected {expectedConsolidationCount} consolidations for consolidator {i} but received {consolidationCount}");
}
}
if (_customDataConsolidatorCount == 0)
{
throw new RegressionTestException($"Unexpected custom data consolidation count: {_customDataConsolidatorCount}");
}
for (var i = 0; i < _smas.Count; i++)
{
if (_smas[i].Samples != _expectedConsolidationCounts[i])
{
throw new RegressionTestException($"Expected {_expectedConsolidationCounts} samples in each SMA but found {_smas[i].Samples} in SMA in index {i}");
}
if (_smas[i].Current.Time != _lastSmaUpdates[i])
{
throw new RegressionTestException($"Expected SMA in index {i} to have been last updated at {_lastSmaUpdates[i]} but was {_smas[i].Current.Time}");
}
}
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
if (!Portfolio.Invested && _future.HasData)
{
SetHoldings(_future.Symbol, 0.5);
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 14228;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 1;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "665.524%"},
{"Drawdown", "1.500%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "109332.4"},
{"Net Profit", "9.332%"},
{"Sharpe Ratio", "9.805"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "93.474%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "3.164"},
{"Beta", "0.957"},
{"Annual Standard Deviation", "0.383"},
{"Annual Variance", "0.146"},
{"Information Ratio", "8.29"},
{"Tracking Error", "0.379"},
{"Treynor Ratio", "3.917"},
{"Total Fees", "$15.05"},
{"Estimated Strategy Capacity", "$2100000000.00"},
{"Lowest Capacity Asset", "ES XCZJLC9NOB29"},
{"Portfolio Turnover", "64.34%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d814db6d5a9c97ee6de477ea06cd3834"}
};
}
}