/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Orders; using System; using System.Collections.Generic; using System.Linq; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm to test combo limit orders /// public class ComboLimitOrderAlgorithm : ComboOrderAlgorithm { private decimal _limitPrice; private int _comboQuantity; private decimal _temporaryLimitPrice; private int _temporaryComboQuantity; private int _fillCount; private decimal _liquidatedQuantity; private bool _liquidated; protected override int ExpectedFillCount { get { // times 2 because of liquidation return OrderLegs.Count * 2; } } protected override IEnumerable PlaceComboOrder(List legs, int quantity, decimal? limitPrice) { _limitPrice = limitPrice.Value; _comboQuantity = quantity; _temporaryLimitPrice = limitPrice.Value - Math.Sign(quantity) * limitPrice.Value * 0.5m; // Won't fill _temporaryComboQuantity = quantity * 10; legs.ForEach(x => { x.OrderPrice = null; }); // First, let's place a limit order that won't fill so we can update it later return ComboLimitOrder(legs, _temporaryComboQuantity, _temporaryLimitPrice); } protected override void UpdateComboOrder(List tickets) { // Let's update the quantity and limit price to the real values tickets[0].Update(new UpdateOrderFields { Quantity = _comboQuantity, LimitPrice = _limitPrice }); } public override void OnOrderEvent(OrderEvent orderEvent) { base.OnOrderEvent(orderEvent); if (orderEvent.Status == OrderStatus.Filled) { _fillCount++; if (_fillCount == OrderLegs.Count) { Liquidate(); } else if (_fillCount < 2 * OrderLegs.Count) { _liquidatedQuantity += orderEvent.FillQuantity; } else if (_fillCount == 2 * OrderLegs.Count) { _liquidated = true; var totalComboQuantity = _comboQuantity * OrderLegs.Select(x => x.Quantity).Sum(); if (_liquidatedQuantity != totalComboQuantity) { throw new RegressionTestException($"Liquidated quantity {_liquidatedQuantity} does not match combo quantity {totalComboQuantity}"); } if (Portfolio.TotalHoldingsValue != 0) { throw new RegressionTestException($"Portfolio value {Portfolio.TotalPortfolioValue} is not zero"); } } } } public override void OnEndOfAlgorithm() { base.OnEndOfAlgorithm(); if (_limitPrice == null) { throw new RegressionTestException("Limit price was not set"); } var fillPricesSum = FillOrderEvents.Take(OrderLegs.Count).Select(x => x.FillPrice * x.FillQuantity / _comboQuantity).Sum(); if (_limitPrice < fillPricesSum) { throw new RegressionTestException($"Limit price expected to be greater that the sum of the fill prices ({fillPricesSum}), but was {_limitPrice}"); } if (!_liquidated) { throw new RegressionTestException("Combo order was not liquidated"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public override bool CanRunLocally => true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public override List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public override long DataPoints => 15023; /// /// Data Points count of the algorithm history /// public override int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public override AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public override Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "6"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "200000"}, {"End Equity", "196348"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$52.00"}, {"Estimated Strategy Capacity", "$5000.00"}, {"Lowest Capacity Asset", "GOOCV W78ZERHAOVVQ|GOOCV VP83T1ZUHROL"}, {"Portfolio Turnover", "60.91%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "100742aeee45101940dc60e26fa1aa39"} }; } }