/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Orders;
using System;
using System.Collections.Generic;
using System.Linq;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm to test combo limit orders
///
public class ComboLimitOrderAlgorithm : ComboOrderAlgorithm
{
private decimal _limitPrice;
private int _comboQuantity;
private decimal _temporaryLimitPrice;
private int _temporaryComboQuantity;
private int _fillCount;
private decimal _liquidatedQuantity;
private bool _liquidated;
protected override int ExpectedFillCount
{
get
{
// times 2 because of liquidation
return OrderLegs.Count * 2;
}
}
protected override IEnumerable PlaceComboOrder(List legs, int quantity, decimal? limitPrice)
{
_limitPrice = limitPrice.Value;
_comboQuantity = quantity;
_temporaryLimitPrice = limitPrice.Value - Math.Sign(quantity) * limitPrice.Value * 0.5m; // Won't fill
_temporaryComboQuantity = quantity * 10;
legs.ForEach(x => { x.OrderPrice = null; });
// First, let's place a limit order that won't fill so we can update it later
return ComboLimitOrder(legs, _temporaryComboQuantity, _temporaryLimitPrice);
}
protected override void UpdateComboOrder(List tickets)
{
// Let's update the quantity and limit price to the real values
tickets[0].Update(new UpdateOrderFields
{
Quantity = _comboQuantity,
LimitPrice = _limitPrice
});
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
base.OnOrderEvent(orderEvent);
if (orderEvent.Status == OrderStatus.Filled)
{
_fillCount++;
if (_fillCount == OrderLegs.Count)
{
Liquidate();
}
else if (_fillCount < 2 * OrderLegs.Count)
{
_liquidatedQuantity += orderEvent.FillQuantity;
}
else if (_fillCount == 2 * OrderLegs.Count)
{
_liquidated = true;
var totalComboQuantity = _comboQuantity * OrderLegs.Select(x => x.Quantity).Sum();
if (_liquidatedQuantity != totalComboQuantity)
{
throw new RegressionTestException($"Liquidated quantity {_liquidatedQuantity} does not match combo quantity {totalComboQuantity}");
}
if (Portfolio.TotalHoldingsValue != 0)
{
throw new RegressionTestException($"Portfolio value {Portfolio.TotalPortfolioValue} is not zero");
}
}
}
}
public override void OnEndOfAlgorithm()
{
base.OnEndOfAlgorithm();
if (_limitPrice == null)
{
throw new RegressionTestException("Limit price was not set");
}
var fillPricesSum = FillOrderEvents.Take(OrderLegs.Count).Select(x => x.FillPrice * x.FillQuantity / _comboQuantity).Sum();
if (_limitPrice < fillPricesSum)
{
throw new RegressionTestException($"Limit price expected to be greater that the sum of the fill prices ({fillPricesSum}), but was {_limitPrice}");
}
if (!_liquidated)
{
throw new RegressionTestException("Combo order was not liquidated");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public override bool CanRunLocally => true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public override List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public override long DataPoints => 15023;
///
/// Data Points count of the algorithm history
///
public override int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public override AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public override Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "6"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "200000"},
{"End Equity", "196348"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$52.00"},
{"Estimated Strategy Capacity", "$5000.00"},
{"Lowest Capacity Asset", "GOOCV W78ZERHAOVVQ|GOOCV VP83T1ZUHROL"},
{"Portfolio Turnover", "60.91%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "100742aeee45101940dc60e26fa1aa39"}
};
}
}