/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Interfaces;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Orders;
using QuantConnect.Data;
namespace QuantConnect.Algorithm.CSharp
{
///
/// In this algorithm we demonstrate how to use the coarse fundamental data to
/// define a universe as the top dollar volume
///
///
///
///
///
public class CoarseFundamentalTop3Algorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private const int NumberOfSymbols = 3;
// initialize our changes to nothing
private SecurityChanges _changes = SecurityChanges.None;
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2014, 03, 24);
SetEndDate(2014, 04, 07);
SetCash(50000);
// this add universe method accepts a single parameter that is a function that
// accepts an IEnumerable and returns IEnumerable
AddUniverse(CoarseSelectionFunction);
}
// sort the data by daily dollar volume and take the top 'NumberOfSymbols'
public static IEnumerable CoarseSelectionFunction(IEnumerable coarse)
{
// sort descending by daily dollar volume
var sortedByDollarVolume = coarse.OrderByDescending(x => x.DollarVolume);
// take the top entries from our sorted collection
var top = sortedByDollarVolume.Take(NumberOfSymbols);
// we need to return only the symbol objects
return top.Select(x => x.Symbol);
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
Log($"OnData({UtcTime:o}): Keys: {string.Join(", ", slice.Keys.OrderBy(x => x))}");
// if we have no changes, do nothing
if (_changes == SecurityChanges.None) return;
// liquidate removed securities
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
}
}
// we want 1/N allocation in each security in our universe
foreach (var security in _changes.AddedSecurities)
{
SetHoldings(security.Symbol, 1m / NumberOfSymbols);
}
_changes = SecurityChanges.None;
}
// this event fires whenever we have changes to our universe
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes = changes;
Log($"OnSecuritiesChanged({UtcTime:o}):: {changes}");
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
Log($"OnOrderEvent({UtcTime:o}):: {orderEvent}");
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 78088;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "12"},
{"Average Win", "0.63%"},
{"Average Loss", "-0.49%"},
{"Compounding Annual Return", "-35.851%"},
{"Drawdown", "2.700%"},
{"Expectancy", "-0.542"},
{"Start Equity", "50000"},
{"End Equity", "49096.01"},
{"Net Profit", "-1.808%"},
{"Sharpe Ratio", "-1.989"},
{"Sortino Ratio", "-3.359"},
{"Probabilistic Sharpe Ratio", "23.898%"},
{"Loss Rate", "80%"},
{"Win Rate", "20%"},
{"Profit-Loss Ratio", "1.29"},
{"Alpha", "-0.172"},
{"Beta", "1.068"},
{"Annual Standard Deviation", "0.141"},
{"Annual Variance", "0.02"},
{"Information Ratio", "-1.865"},
{"Tracking Error", "0.096"},
{"Treynor Ratio", "-0.263"},
{"Total Fees", "$26.72"},
{"Estimated Strategy Capacity", "$630000000.00"},
{"Lowest Capacity Asset", "FB V6OIPNZEM8V9"},
{"Portfolio Turnover", "24.59%"},
{"Drawdown Recovery", "6"},
{"OrderListHash", "90b57d40d047eedbff7111d2a73a1290"}
};
}
}