/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Interfaces; using System.Collections.Generic; using System.Linq; using QuantConnect.Data.Market; using QuantConnect.Data.UniverseSelection; using QuantConnect.Orders; using QuantConnect.Data; namespace QuantConnect.Algorithm.CSharp { /// /// In this algorithm we demonstrate how to use the coarse fundamental data to /// define a universe as the top dollar volume /// /// /// /// /// public class CoarseFundamentalTop3Algorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private const int NumberOfSymbols = 3; // initialize our changes to nothing private SecurityChanges _changes = SecurityChanges.None; public override void Initialize() { UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2014, 03, 24); SetEndDate(2014, 04, 07); SetCash(50000); // this add universe method accepts a single parameter that is a function that // accepts an IEnumerable and returns IEnumerable AddUniverse(CoarseSelectionFunction); } // sort the data by daily dollar volume and take the top 'NumberOfSymbols' public static IEnumerable CoarseSelectionFunction(IEnumerable coarse) { // sort descending by daily dollar volume var sortedByDollarVolume = coarse.OrderByDescending(x => x.DollarVolume); // take the top entries from our sorted collection var top = sortedByDollarVolume.Take(NumberOfSymbols); // we need to return only the symbol objects return top.Select(x => x.Symbol); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { Log($"OnData({UtcTime:o}): Keys: {string.Join(", ", slice.Keys.OrderBy(x => x))}"); // if we have no changes, do nothing if (_changes == SecurityChanges.None) return; // liquidate removed securities foreach (var security in _changes.RemovedSecurities) { if (security.Invested) { Liquidate(security.Symbol); } } // we want 1/N allocation in each security in our universe foreach (var security in _changes.AddedSecurities) { SetHoldings(security.Symbol, 1m / NumberOfSymbols); } _changes = SecurityChanges.None; } // this event fires whenever we have changes to our universe public override void OnSecuritiesChanged(SecurityChanges changes) { _changes = changes; Log($"OnSecuritiesChanged({UtcTime:o}):: {changes}"); } public override void OnOrderEvent(OrderEvent orderEvent) { Log($"OnOrderEvent({UtcTime:o}):: {orderEvent}"); } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 78088; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "12"}, {"Average Win", "0.63%"}, {"Average Loss", "-0.49%"}, {"Compounding Annual Return", "-35.851%"}, {"Drawdown", "2.700%"}, {"Expectancy", "-0.542"}, {"Start Equity", "50000"}, {"End Equity", "49096.01"}, {"Net Profit", "-1.808%"}, {"Sharpe Ratio", "-1.989"}, {"Sortino Ratio", "-3.359"}, {"Probabilistic Sharpe Ratio", "23.898%"}, {"Loss Rate", "80%"}, {"Win Rate", "20%"}, {"Profit-Loss Ratio", "1.29"}, {"Alpha", "-0.172"}, {"Beta", "1.068"}, {"Annual Standard Deviation", "0.141"}, {"Annual Variance", "0.02"}, {"Information Ratio", "-1.865"}, {"Tracking Error", "0.096"}, {"Treynor Ratio", "-0.263"}, {"Total Fees", "$26.72"}, {"Estimated Strategy Capacity", "$630000000.00"}, {"Lowest Capacity Asset", "FB V6OIPNZEM8V9"}, {"Portfolio Turnover", "24.59%"}, {"Drawdown Recovery", "6"}, {"OrderListHash", "90b57d40d047eedbff7111d2a73a1290"} }; } }