/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Data.UniverseSelection; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// Demonstration of how to chain a coarse and fine universe selection with an option chain universe selection model /// that will add and remove an for each symbol selected on fine /// public class CoarseFineOptionUniverseChainRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { // initialize our changes to nothing private SecurityChanges _changes = SecurityChanges.None; private int _optionCount; private Symbol _lastEquityAdded; private Symbol _aapl; private Symbol _twx; private Dictionary _rawPrices = new() { { "AOL", 70 }, { "AAPL", 650 } }; public override void Initialize() { _twx = QuantConnect.Symbol.Create("TWX", SecurityType.Equity, Market.USA); _aapl = QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA); UniverseSettings.Resolution = Resolution.Minute; SetStartDate(2014, 06, 04); // TWX is selected the 4th and 5th and aapl after that. // If the algo ends on the 6th, TWX subscriptions will not be removed before OnEndOfAlgorithm is called: // - 6th: AAPL is selected, TWX is removed but subscriptions are not removed because the securities are invested. // - TWX and its options are liquidated. // - 7th: Since options universe selection is daily now, TWX subscriptions are removed the next day (7th) SetEndDate(2014, 06, 07); var selectionUniverse = AddUniverse(enumerable => new[] { Time.Date <= new DateTime(2014, 6, 5) ? _twx : _aapl }, enumerable => new[] { Time.Date <= new DateTime(2014, 6, 5) ? _twx : _aapl }); AddUniverseOptions(selectionUniverse, universe => { if (universe.Underlying == null) { throw new RegressionTestException("Underlying data point is null! This shouldn't happen, each OptionChainUniverse handles and should provide this"); } return universe.IncludeWeeklys() .FrontMonth() .Contracts(universe.Take(5)); }); } public override void OnData(Slice slice) { // if we have no changes, do nothing if (_changes == SecurityChanges.None || _changes.AddedSecurities.Any(security => security.Price == 0)) { return; } // liquidate removed securities foreach (var security in _changes.RemovedSecurities) { if (security.Invested) { Liquidate(security.Symbol); } } foreach (var security in _changes.AddedSecurities) { if (!security.Symbol.HasUnderlying) { _lastEquityAdded = security.Symbol; } else { // options added should all match prev added security if (security.Symbol.Underlying != _lastEquityAdded) { throw new RegressionTestException($"Unexpected symbol added {security.Symbol}"); } _optionCount++; } SetHoldings(security.Symbol, 0.05m); var config = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(security.Symbol).ToList(); if (!config.Any()) { throw new RegressionTestException($"Was expecting configurations for {security.Symbol}"); } if (config.Any(dataConfig => dataConfig.DataNormalizationMode != DataNormalizationMode.Raw)) { throw new RegressionTestException($"Was expecting DataNormalizationMode.Raw configurations for {security.Symbol}"); } if (security.Symbol.SecurityType == SecurityType.Equity) { var expectedPrice = _rawPrices[security.Symbol.ID.Symbol]; if (Math.Abs(security.Price - expectedPrice) > expectedPrice * 0.1m) { throw new RegressionTestException($"Unexpected raw prices for symbol {security.Symbol}"); } } } _changes = SecurityChanges.None; } public override void OnSecuritiesChanged(SecurityChanges changes) { _changes += changes; } public override void OnEndOfAlgorithm() { var config = SubscriptionManager.Subscriptions.ToList(); if (config.Any(dataConfig => dataConfig.Symbol == _twx || dataConfig.Symbol.Underlying == _twx)) { throw new RegressionTestException($"Was NOT expecting any configurations for {_twx} or it's options, since coarse/fine should have deselected it"); } if (_optionCount == 0) { throw new RegressionTestException("Option universe chain did not add any option!"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 18993; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "13"}, {"Average Win", "0.04%"}, {"Average Loss", "-0.05%"}, {"Compounding Annual Return", "-24.719%"}, {"Drawdown", "0.500%"}, {"Expectancy", "-0.685"}, {"Start Equity", "100000"}, {"End Equity", "99766.89"}, {"Net Profit", "-0.233%"}, {"Sharpe Ratio", "-9.078"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "83%"}, {"Win Rate", "17%"}, {"Profit-Loss Ratio", "0.89"}, {"Alpha", "4.632"}, {"Beta", "-1.524"}, {"Annual Standard Deviation", "0.029"}, {"Annual Variance", "0.001"}, {"Information Ratio", "-72.647"}, {"Tracking Error", "0.048"}, {"Treynor Ratio", "0.172"}, {"Total Fees", "$16.10"}, {"Estimated Strategy Capacity", "$5000000.00"}, {"Lowest Capacity Asset", "AOL R735QTJ8XC9X"}, {"Portfolio Turnover", "17.64%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "a8605c1f5a9c67f60f1ddc963ec45542"} }; } }