/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Demonstration of how to chain a coarse and fine universe selection with an option chain universe selection model
/// that will add and remove an for each symbol selected on fine
///
public class CoarseFineOptionUniverseChainRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
// initialize our changes to nothing
private SecurityChanges _changes = SecurityChanges.None;
private int _optionCount;
private Symbol _lastEquityAdded;
private Symbol _aapl;
private Symbol _twx;
private Dictionary _rawPrices = new()
{
{ "AOL", 70 },
{ "AAPL", 650 }
};
public override void Initialize()
{
_twx = QuantConnect.Symbol.Create("TWX", SecurityType.Equity, Market.USA);
_aapl = QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA);
UniverseSettings.Resolution = Resolution.Minute;
SetStartDate(2014, 06, 04);
// TWX is selected the 4th and 5th and aapl after that.
// If the algo ends on the 6th, TWX subscriptions will not be removed before OnEndOfAlgorithm is called:
// - 6th: AAPL is selected, TWX is removed but subscriptions are not removed because the securities are invested.
// - TWX and its options are liquidated.
// - 7th: Since options universe selection is daily now, TWX subscriptions are removed the next day (7th)
SetEndDate(2014, 06, 07);
var selectionUniverse = AddUniverse(enumerable => new[] { Time.Date <= new DateTime(2014, 6, 5) ? _twx : _aapl },
enumerable => new[] { Time.Date <= new DateTime(2014, 6, 5) ? _twx : _aapl });
AddUniverseOptions(selectionUniverse, universe =>
{
if (universe.Underlying == null)
{
throw new RegressionTestException("Underlying data point is null! This shouldn't happen, each OptionChainUniverse handles and should provide this");
}
return universe.IncludeWeeklys()
.FrontMonth()
.Contracts(universe.Take(5));
});
}
public override void OnData(Slice slice)
{
// if we have no changes, do nothing
if (_changes == SecurityChanges.None ||
_changes.AddedSecurities.Any(security => security.Price == 0))
{
return;
}
// liquidate removed securities
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
}
}
foreach (var security in _changes.AddedSecurities)
{
if (!security.Symbol.HasUnderlying)
{
_lastEquityAdded = security.Symbol;
}
else
{
// options added should all match prev added security
if (security.Symbol.Underlying != _lastEquityAdded)
{
throw new RegressionTestException($"Unexpected symbol added {security.Symbol}");
}
_optionCount++;
}
SetHoldings(security.Symbol, 0.05m);
var config = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(security.Symbol).ToList();
if (!config.Any())
{
throw new RegressionTestException($"Was expecting configurations for {security.Symbol}");
}
if (config.Any(dataConfig => dataConfig.DataNormalizationMode != DataNormalizationMode.Raw))
{
throw new RegressionTestException($"Was expecting DataNormalizationMode.Raw configurations for {security.Symbol}");
}
if (security.Symbol.SecurityType == SecurityType.Equity)
{
var expectedPrice = _rawPrices[security.Symbol.ID.Symbol];
if (Math.Abs(security.Price - expectedPrice) > expectedPrice * 0.1m)
{
throw new RegressionTestException($"Unexpected raw prices for symbol {security.Symbol}");
}
}
}
_changes = SecurityChanges.None;
}
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes += changes;
}
public override void OnEndOfAlgorithm()
{
var config = SubscriptionManager.Subscriptions.ToList();
if (config.Any(dataConfig => dataConfig.Symbol == _twx || dataConfig.Symbol.Underlying == _twx))
{
throw new RegressionTestException($"Was NOT expecting any configurations for {_twx} or it's options, since coarse/fine should have deselected it");
}
if (_optionCount == 0)
{
throw new RegressionTestException("Option universe chain did not add any option!");
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 18993;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "13"},
{"Average Win", "0.04%"},
{"Average Loss", "-0.05%"},
{"Compounding Annual Return", "-24.719%"},
{"Drawdown", "0.500%"},
{"Expectancy", "-0.685"},
{"Start Equity", "100000"},
{"End Equity", "99766.89"},
{"Net Profit", "-0.233%"},
{"Sharpe Ratio", "-9.078"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "83%"},
{"Win Rate", "17%"},
{"Profit-Loss Ratio", "0.89"},
{"Alpha", "4.632"},
{"Beta", "-1.524"},
{"Annual Standard Deviation", "0.029"},
{"Annual Variance", "0.001"},
{"Information Ratio", "-72.647"},
{"Tracking Error", "0.048"},
{"Treynor Ratio", "0.172"},
{"Total Fees", "$16.10"},
{"Estimated Strategy Capacity", "$5000000.00"},
{"Lowest Capacity Asset", "AOL R735QTJ8XC9X"},
{"Portfolio Turnover", "17.64%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "a8605c1f5a9c67f60f1ddc963ec45542"}
};
}
}