/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Demonstration of how to define a universe
/// as a combination of use the coarse fundamental data and fine fundamental data
///
///
///
///
///
public class CoarseFineFundamentalRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private const int NumberOfSymbolsFine = 2;
// initialize our changes to nothing
private SecurityChanges _changes = SecurityChanges.None;
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2014, 03, 24);
SetEndDate(2014, 04, 07);
SetCash(50000);
// this add universe method accepts two parameters:
// - coarse selection function: accepts an IEnumerable and returns an IEnumerable
// - fine selection function: accepts an IEnumerable and returns an IEnumerable
AddUniverse(CoarseSelectionFunction, FineSelectionFunction);
}
// return a list of three fixed symbol objects
public IEnumerable CoarseSelectionFunction(IEnumerable coarse)
{
if (Time.Date < new DateTime(2014, 4, 1))
{
return new List
{
QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA),
QuantConnect.Symbol.Create("AIG", SecurityType.Equity, Market.USA),
QuantConnect.Symbol.Create("IBM", SecurityType.Equity, Market.USA)
};
}
return new List
{
QuantConnect.Symbol.Create("BAC", SecurityType.Equity, Market.USA),
QuantConnect.Symbol.Create("GOOG", SecurityType.Equity, Market.USA),
QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA)
};
}
// sort the data by market capitalization and take the top 'NumberOfSymbolsFine'
public IEnumerable FineSelectionFunction(IEnumerable fine)
{
// sort descending by market capitalization
var sortedByMarketCap = fine.OrderByDescending(x => x.MarketCap);
// take the top entries from our sorted collection
var topFine = sortedByMarketCap.Take(NumberOfSymbolsFine);
// we need to return only the symbol objects
return topFine.Select(x => x.Symbol);
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
// verify we don't receive data for inactive securities
var inactiveSymbols = slice.Keys
.Where(sym => !UniverseManager.ActiveSecurities.ContainsKey(sym))
// on daily data we'll get the last data point and the delisting at the same time
.Where(sym => !slice.Delistings.ContainsKey(sym) || slice.Delistings[sym].Type != DelistingType.Delisted)
.ToList();
if (inactiveSymbols.Any())
{
var symbols = string.Join(", ", inactiveSymbols);
throw new RegressionTestException($"Received data for non-active security: {symbols}.");
}
// if we have no changes, do nothing
if (_changes == SecurityChanges.None) return;
// liquidate removed securities
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
Debug("Liquidated Stock: " + security.Symbol.Value);
}
}
// we want 50% allocation in each security in our universe
foreach (var security in _changes.AddedSecurities)
{
if (security.Fundamentals.EarningRatios.EquityPerShareGrowth.OneYear > 0.25)
{
SetHoldings(security.Symbol, 0.5m);
Debug("Purchased Stock: " + security.Symbol.Value);
}
}
_changes = SecurityChanges.None;
}
// this event fires whenever we have changes to our universe
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes = changes;
if (changes.AddedSecurities.Count > 0)
{
Debug("Securities added: " + string.Join(",", changes.AddedSecurities.Select(x => x.Symbol.Value)));
}
if (changes.RemovedSecurities.Count > 0)
{
Debug("Securities removed: " + string.Join(",", changes.RemovedSecurities.Select(x => x.Symbol.Value)));
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 7244;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "2"},
{"Average Win", "1.39%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "40.025%"},
{"Drawdown", "1.400%"},
{"Expectancy", "0"},
{"Start Equity", "50000"},
{"End Equity", "50696.56"},
{"Net Profit", "1.393%"},
{"Sharpe Ratio", "3.192"},
{"Sortino Ratio", "4.952"},
{"Probabilistic Sharpe Ratio", "68.664%"},
{"Loss Rate", "0%"},
{"Win Rate", "100%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.328"},
{"Beta", "0.474"},
{"Annual Standard Deviation", "0.088"},
{"Annual Variance", "0.008"},
{"Information Ratio", "4.219"},
{"Tracking Error", "0.09"},
{"Treynor Ratio", "0.59"},
{"Total Fees", "$2.00"},
{"Estimated Strategy Capacity", "$81000000.00"},
{"Lowest Capacity Asset", "IBM R735QTJ8XC9X"},
{"Portfolio Turnover", "6.65%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "4eaacdd341a5be0d04cb32647d931471"}
};
}
}