/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Data.Fundamental; using QuantConnect.Data.Market; using QuantConnect.Data.UniverseSelection; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// Demonstration of how to define a universe /// as a combination of use the coarse fundamental data and fine fundamental data /// /// /// /// /// public class CoarseFineFundamentalRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private const int NumberOfSymbolsFine = 2; // initialize our changes to nothing private SecurityChanges _changes = SecurityChanges.None; public override void Initialize() { UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2014, 03, 24); SetEndDate(2014, 04, 07); SetCash(50000); // this add universe method accepts two parameters: // - coarse selection function: accepts an IEnumerable and returns an IEnumerable // - fine selection function: accepts an IEnumerable and returns an IEnumerable AddUniverse(CoarseSelectionFunction, FineSelectionFunction); } // return a list of three fixed symbol objects public IEnumerable CoarseSelectionFunction(IEnumerable coarse) { if (Time.Date < new DateTime(2014, 4, 1)) { return new List { QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA), QuantConnect.Symbol.Create("AIG", SecurityType.Equity, Market.USA), QuantConnect.Symbol.Create("IBM", SecurityType.Equity, Market.USA) }; } return new List { QuantConnect.Symbol.Create("BAC", SecurityType.Equity, Market.USA), QuantConnect.Symbol.Create("GOOG", SecurityType.Equity, Market.USA), QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA) }; } // sort the data by market capitalization and take the top 'NumberOfSymbolsFine' public IEnumerable FineSelectionFunction(IEnumerable fine) { // sort descending by market capitalization var sortedByMarketCap = fine.OrderByDescending(x => x.MarketCap); // take the top entries from our sorted collection var topFine = sortedByMarketCap.Take(NumberOfSymbolsFine); // we need to return only the symbol objects return topFine.Select(x => x.Symbol); } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { // verify we don't receive data for inactive securities var inactiveSymbols = slice.Keys .Where(sym => !UniverseManager.ActiveSecurities.ContainsKey(sym)) // on daily data we'll get the last data point and the delisting at the same time .Where(sym => !slice.Delistings.ContainsKey(sym) || slice.Delistings[sym].Type != DelistingType.Delisted) .ToList(); if (inactiveSymbols.Any()) { var symbols = string.Join(", ", inactiveSymbols); throw new RegressionTestException($"Received data for non-active security: {symbols}."); } // if we have no changes, do nothing if (_changes == SecurityChanges.None) return; // liquidate removed securities foreach (var security in _changes.RemovedSecurities) { if (security.Invested) { Liquidate(security.Symbol); Debug("Liquidated Stock: " + security.Symbol.Value); } } // we want 50% allocation in each security in our universe foreach (var security in _changes.AddedSecurities) { if (security.Fundamentals.EarningRatios.EquityPerShareGrowth.OneYear > 0.25) { SetHoldings(security.Symbol, 0.5m); Debug("Purchased Stock: " + security.Symbol.Value); } } _changes = SecurityChanges.None; } // this event fires whenever we have changes to our universe public override void OnSecuritiesChanged(SecurityChanges changes) { _changes = changes; if (changes.AddedSecurities.Count > 0) { Debug("Securities added: " + string.Join(",", changes.AddedSecurities.Select(x => x.Symbol.Value))); } if (changes.RemovedSecurities.Count > 0) { Debug("Securities removed: " + string.Join(",", changes.RemovedSecurities.Select(x => x.Symbol.Value))); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 7244; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "2"}, {"Average Win", "1.39%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "40.025%"}, {"Drawdown", "1.400%"}, {"Expectancy", "0"}, {"Start Equity", "50000"}, {"End Equity", "50696.56"}, {"Net Profit", "1.393%"}, {"Sharpe Ratio", "3.192"}, {"Sortino Ratio", "4.952"}, {"Probabilistic Sharpe Ratio", "68.664%"}, {"Loss Rate", "0%"}, {"Win Rate", "100%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0.328"}, {"Beta", "0.474"}, {"Annual Standard Deviation", "0.088"}, {"Annual Variance", "0.008"}, {"Information Ratio", "4.219"}, {"Tracking Error", "0.09"}, {"Treynor Ratio", "0.59"}, {"Total Fees", "$2.00"}, {"Estimated Strategy Capacity", "$81000000.00"}, {"Lowest Capacity Asset", "IBM R735QTJ8XC9X"}, {"Portfolio Turnover", "6.65%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "4eaacdd341a5be0d04cb32647d931471"} }; } }