/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using QuantConnect.Data;
using QuantConnect.Data.Custom.Intrinio;
using QuantConnect.Indicators;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Basic template algorithm simply initializes the date range and cash. This is a skeleton
/// framework you can use for designing an algorithm.
///
/// This regression test requires a valid Intrinio account
///
///
///
public class BasicTemplateIntrinioEconomicData : QCAlgorithm
{
// Set your Intrinio user and password.
private string _user = string.Empty;
private string _password = string.Empty;
private Symbol _uso; // United States Oil Fund LP
private Symbol _bno; // United States Brent Oil Fund LP
private readonly Identity _brent = new Identity("Brent");
private readonly Identity _wti = new Identity("WTI");
private CompositeIndicator _spread;
private ExponentialMovingAverage _emaWti;
///
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All
/// algorithms must initialized.
///
public override void Initialize()
{
SetStartDate(year: 2010, month: 01, day: 01); //Set Start Date
SetEndDate(year: 2013, month: 12, day: 31); //Set End Date
SetCash(startingCash: 100000); //Set Strategy Cash
// Set your Intrinio user and password.
IntrinioConfig.SetUserAndPassword(_user, _password);
// Set Intrinio config to make 1 call each minute, default is 1 call each 5 seconds.
// (1 call each minute is the free account limit for historical_data endpoint)
IntrinioConfig.SetTimeIntervalBetweenCalls(TimeSpan.FromMinutes(1));
// Find more symbols here: http://quantconnect.com/data
// Forex, CFD, Equities Resolutions: Tick, Second, Minute, Hour, Daily.
// Futures Resolution: Tick, Second, Minute
// Options Resolution: Minute Only.
_uso = AddEquity("USO", Resolution.Daily, leverage: 2m).Symbol;
_bno = AddEquity("BNO", Resolution.Daily, leverage: 2m).Symbol;
AddData(IntrinioEconomicDataSources.Commodities.CrudeOilWTI, Resolution.Daily);
AddData(IntrinioEconomicDataSources.Commodities.CrudeOilBrent, Resolution.Daily);
_spread = _brent.Minus(_wti);
_emaWti = EMA(Securities[IntrinioEconomicDataSources.Commodities.CrudeOilWTI].Symbol, 10);
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
var customData = slice.Get();
if (customData.Count == 0) return;
foreach (var economicData in customData.Values)
{
if (economicData.Symbol.Value == IntrinioEconomicDataSources.Commodities.CrudeOilWTI)
{
_wti.Update(economicData.Time, economicData.Price);
}
else
{
_brent.Update(economicData.Time, economicData.Price);
}
}
if (_spread > 0 && !Portfolio[_bno].IsLong ||
_spread < 0 && !Portfolio[_uso].IsShort)
{
var logText = _spread > 0 ?
new[] {"higher", "long", "short"} :
new[] {"lower", "short", "long"};
Log($"Brent Price is {logText[0]} than West Texas. Go {logText[1]} BNO and {logText[2]} USO. West Texas EMA: {_emaWti}");
SetHoldings(_bno, 0.25 * Math.Sign(_spread));
SetHoldings(_uso, -0.25 * Math.Sign(_spread));
}
}
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "91"},
{"Average Win", "0.09%"},
{"Average Loss", "-0.01%"},
{"Compounding Annual Return", "5.732%"},
{"Drawdown", "4.800%"},
{"Expectancy", "1.846"},
{"Net Profit", "24.996%"},
{"Sharpe Ratio", "1.142"},
{"Loss Rate", "68%"},
{"Win Rate", "32%"},
{"Profit-Loss Ratio", "7.97"},
{"Alpha", "0.076"},
{"Beta", "-1.101"},
{"Annual Standard Deviation", "0.048"},
{"Annual Variance", "0.002"},
{"Information Ratio", "0.741"},
{"Tracking Error", "0.048"},
{"Treynor Ratio", "-0.05"},
{"Total Fees", "$102.64"}
};
}
}