/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ using QuantConnect.Data; using System.Collections.Generic; using QuantConnect.Indicators; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// This example demonstrates how to add index asset types and trade index options on SPX. /// public class BasicTemplateIndexOptionsAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _spx; private ExponentialMovingAverage _emaSlow; private ExponentialMovingAverage _emaFast; protected virtual Resolution Resolution => Resolution.Minute; protected virtual int StartDay => 4; /// /// Initialize your algorithm and add desired assets. /// public override void Initialize() { SetStartDate(2021, 1, StartDay); SetEndDate(2021, 2, 1); SetCash(1000000); // Use indicator for signal; but it cannot be traded. // We will instead trade on SPX options _spx = AddIndex("SPX", Resolution).Symbol; var spxOptions = AddIndexOption(_spx, Resolution); spxOptions.SetFilter(filterFunc => filterFunc.CallsOnly()); _emaSlow = EMA(_spx, Resolution > Resolution.Minute ? 6 : 80); _emaFast = EMA(_spx, Resolution > Resolution.Minute ? 2 : 200); Settings.DailyPreciseEndTime = true; } /// /// Index EMA Cross trading index options of the index. /// public override void OnData(Slice slice) { if (!slice.Bars.ContainsKey(_spx)) { Debug($"No SPX on {Time}"); return; } // Warm up indicators if (!_emaSlow.IsReady) { Debug($"EMA slow not ready on {Time}"); return; } foreach (var chain in slice.OptionChains.Values) { foreach (var contract in chain.Contracts.Values) { if (contract.Expiry.Month == 3 && contract.Symbol.ID.StrikePrice == 3700m && contract.Right == OptionRight.Call && slice.QuoteBars.ContainsKey(contract.Symbol)) { Log($"{Time} {contract.Strike}{(contract.Right == OptionRight.Call ? 'C' : 'P')} -- {slice.QuoteBars[contract.Symbol]}"); } if (Portfolio.Invested) { continue; } if (_emaFast > _emaSlow && contract.Right == OptionRight.Call) { Liquidate(InvertOption(contract.Symbol)); MarketOrder(contract.Symbol, 1); } else if (_emaFast < _emaSlow && contract.Right == OptionRight.Put) { Liquidate(InvertOption(contract.Symbol)); MarketOrder(contract.Symbol, 1); } } } } public override void OnEndOfAlgorithm() { if (Portfolio[_spx].TotalSaleVolume > 0) { throw new RegressionTestException("Index is not tradable."); } if (Portfolio.TotalSaleVolume == 0) { throw new RegressionTestException("Trade volume should be greater than zero by the end of this algorithm"); } AssertIndicators(); } public Symbol InvertOption(Symbol symbol) { return QuantConnect.Symbol.CreateOption( symbol.Underlying, symbol.ID.Market, symbol.ID.OptionStyle, symbol.ID.OptionRight == OptionRight.Call ? OptionRight.Put : OptionRight.Call, symbol.ID.StrikePrice, symbol.ID.Date); } /// /// Asserts indicators are ready /// /// protected void AssertIndicators() { if (!_emaSlow.IsReady || !_emaFast.IsReady) { throw new RegressionTestException("Indicators are not ready!"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public virtual bool CanRunLocally { get; } = false; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public virtual List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public virtual long DataPoints => 0; /// /// Data Points count of the algorithm history /// public virtual int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public virtual Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "8220"}, {"Average Win", "0.00%"}, {"Average Loss", "0.00%"}, {"Compounding Annual Return", "-100.000%"}, {"Drawdown", "13.500%"}, {"Expectancy", "-0.818"}, {"Net Profit", "-13.517%"}, {"Sharpe Ratio", "-2.678"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "89%"}, {"Win Rate", "11%"}, {"Profit-Loss Ratio", "0.69"}, {"Alpha", "4.398"}, {"Beta", "-0.989"}, {"Annual Standard Deviation", "0.373"}, {"Annual Variance", "0.139"}, {"Information Ratio", "-12.816"}, {"Tracking Error", "0.504"}, {"Treynor Ratio", "1.011"}, {"Total Fees", "$15207.00"}, {"Estimated Strategy Capacity", "$8800000.00"}, {"Fitness Score", "0.033"}, {"Kelly Criterion Estimate", "0"}, {"Kelly Criterion Probability Value", "0"}, {"Sortino Ratio", "-8.62"}, {"Return Over Maximum Drawdown", "-7.81"}, {"Portfolio Turnover", "302.321"}, {"Total Insights Generated", "0"}, {"Total Insights Closed", "0"}, {"Total Insights Analysis Completed", "0"}, {"Long Insight Count", "0"}, {"Short Insight Count", "0"}, {"Long/Short Ratio", "100%"}, {"Estimated Monthly Alpha Value", "$0"}, {"Total Accumulated Estimated Alpha Value", "$0"}, {"Mean Population Estimated Insight Value", "$0"}, {"Mean Population Direction", "0%"}, {"Mean Population Magnitude", "0%"}, {"Rolling Averaged Population Direction", "0%"}, {"Rolling Averaged Population Magnitude", "0%"}, {"OrderListHash", "35b3f4b7a225468d42ca085386a2383e"} }; } }