/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Risk; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Interfaces; using QuantConnect.Securities; namespace QuantConnect.Algorithm.CSharp { /// /// Basic template futures framework algorithm uses framework components to define an algorithm /// that trades futures. /// public class BasicTemplateFuturesFrameworkAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { protected virtual bool ExtendedMarketHours => false; public override void Initialize() { UniverseSettings.Resolution = Resolution.Minute; UniverseSettings.ExtendedMarketHours = ExtendedMarketHours; SetStartDate(2013, 10, 07); SetEndDate(2013, 10, 11); SetCash(100000); // set framework models SetUniverseSelection(new FrontMonthFutureUniverseSelectionModel(SelectFutureChainSymbols)); SetAlpha(new ConstantFutureContractAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromDays(1))); SetPortfolioConstruction(new SingleSharePortfolioConstructionModel()); SetExecution(new ImmediateExecutionModel()); SetRiskManagement(new NullRiskManagementModel()); } // future symbol universe selection function private static IEnumerable SelectFutureChainSymbols(DateTime utcTime) { var newYorkTime = utcTime.ConvertFromUtc(TimeZones.NewYork); if (newYorkTime.Date < new DateTime(2013, 10, 09)) { yield return QuantConnect.Symbol.Create(Futures.Indices.SP500EMini, SecurityType.Future, Market.CME); } if (newYorkTime.Date >= new DateTime(2013, 10, 09)) { yield return QuantConnect.Symbol.Create(Futures.Metals.Gold, SecurityType.Future, Market.COMEX); } } /// /// Creates futures chain universes that select the front month contract and runs a user /// defined futureChainSymbolSelector every day to enable choosing different futures chains /// class FrontMonthFutureUniverseSelectionModel : FutureUniverseSelectionModel { public FrontMonthFutureUniverseSelectionModel(Func> futureChainSymbolSelector) : base(TimeSpan.FromDays(1), futureChainSymbolSelector) { } /// /// Defines the future chain universe filter /// protected override FutureFilterUniverse Filter(FutureFilterUniverse filter) { return filter .FrontMonth() .OnlyApplyFilterAtMarketOpen(); } } /// /// Implementation of a constant alpha model that only emits insights for future symbols /// class ConstantFutureContractAlphaModel : ConstantAlphaModel { public ConstantFutureContractAlphaModel(InsightType type, InsightDirection direction, TimeSpan period) : base(type, direction, period) { } protected override bool ShouldEmitInsight(DateTime utcTime, Symbol symbol) { // only emit alpha for future symbols and not underlying equity symbols if (symbol.SecurityType != SecurityType.Future) { return false; } return base.ShouldEmitInsight(utcTime, symbol); } } /// /// Portfolio construction model that sets target quantities to 1 for up insights and -1 for down insights /// class SingleSharePortfolioConstructionModel : PortfolioConstructionModel { public override IEnumerable CreateTargets(QCAlgorithm algorithm, Insight[] insights) { foreach (var insight in insights) { yield return new PortfolioTarget(insight.Symbol, (int) insight.Direction); } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public virtual bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public virtual List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public virtual long DataPoints => 24883; /// /// Data Points count of the algorithm history /// public virtual int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public virtual Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "2"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "-81.734%"}, {"Drawdown", "4.100%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "97830.76"}, {"Net Profit", "-2.169%"}, {"Sharpe Ratio", "-10.299"}, {"Sortino Ratio", "-10.299"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-1.212"}, {"Beta", "0.238"}, {"Annual Standard Deviation", "0.072"}, {"Annual Variance", "0.005"}, {"Information Ratio", "-15.404"}, {"Tracking Error", "0.176"}, {"Treynor Ratio", "-3.109"}, {"Total Fees", "$4.62"}, {"Estimated Strategy Capacity", "$17000000.00"}, {"Lowest Capacity Asset", "GC VL5E74HP3EE5"}, {"Portfolio Turnover", "43.23%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "c0fc1bcdc3008a8d263521bbc9d7cdbd"} }; } }