/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Data.UniverseSelection; using QuantConnect.Interfaces; using QuantConnect.Securities; using QuantConnect.Securities.Future; namespace QuantConnect.Algorithm.CSharp { /// /// This example demonstrates how to add futures for a given underlying asset. /// It also shows how you can prefilter contracts easily based on expirations, and how you /// can inspect the futures chain to pick a specific contract to trade. /// /// /// /// public class BasicTemplateFuturesAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _contractSymbol; // S&P 500 EMini futures private const string RootSP500 = Futures.Indices.SP500EMini; // Gold futures private const string RootGold = Futures.Metals.Gold; /// /// Initialize your algorithm and add desired assets. /// public override void Initialize() { SetStartDate(2013, 10, 08); SetEndDate(2013, 10, 10); SetCash(1000000); var futureSP500 = AddFuture(RootSP500); var futureGold = AddFuture(RootGold); // set our expiry filter for this futures chain // SetFilter method accepts TimeSpan objects or integer for days. // The following statements yield the same filtering criteria futureSP500.SetFilter(TimeSpan.Zero, TimeSpan.FromDays(182)); futureGold.SetFilter(0, 182); var benchmark = AddEquity("SPY"); SetBenchmark(benchmark.Symbol); var seeder = new FuncSecuritySeeder(GetLastKnownPrices); SetSecurityInitializer(security => seeder.SeedSecurity(security)); } /// /// Event - v3.0 DATA EVENT HANDLER: (Pattern) Basic template for user to override for receiving all subscription data in a single event /// /// The current slice of data keyed by symbol string public override void OnData(Slice slice) { foreach (var changedEvent in slice.SymbolChangedEvents.Values) { Debug($"{Time} - SymbolChanged event: {changedEvent}"); if (Time.TimeOfDay != TimeSpan.Zero) { throw new RegressionTestException($"{Time} unexpected symbol changed event {changedEvent}!"); } } if (!Portfolio.Invested) { foreach(var chain in slice.FutureChains) { // find the front contract expiring no earlier than in 90 days var contract = ( from futuresContract in chain.Value.OrderBy(x => x.Expiry) where futuresContract.Expiry > Time.Date.AddDays(90) select futuresContract ).FirstOrDefault(); // if found, trade it if (contract != null) { _contractSymbol = contract.Symbol; MarketOrder(_contractSymbol, 1); } } } else { Liquidate(); } } public override void OnEndOfAlgorithm() { // Get the margin requirements var buyingPowerModel = Securities[_contractSymbol].BuyingPowerModel; var futureMarginModel = buyingPowerModel as FutureMarginModel; if (buyingPowerModel == null) { throw new RegressionTestException($"Invalid buying power model. Found: {buyingPowerModel.GetType().Name}. Expected: {nameof(FutureMarginModel)}"); } var initialOvernight = futureMarginModel.InitialOvernightMarginRequirement; var maintenanceOvernight = futureMarginModel.MaintenanceOvernightMarginRequirement; var initialIntraday = futureMarginModel.InitialIntradayMarginRequirement; var maintenanceIntraday = futureMarginModel.MaintenanceIntradayMarginRequirement; } public override void OnSecuritiesChanged(SecurityChanges changes) { foreach (var addedSecurity in changes.AddedSecurities) { if (addedSecurity.Symbol.SecurityType == SecurityType.Future && !addedSecurity.Symbol.IsCanonical() && !addedSecurity.HasData) { throw new RegressionTestException($"Future contracts did not work up as expected: {addedSecurity.Symbol}"); } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 40308; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 340; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "2700"}, {"Average Win", "0.00%"}, {"Average Loss", "0.00%"}, {"Compounding Annual Return", "-99.597%"}, {"Drawdown", "4.400%"}, {"Expectancy", "-0.724"}, {"Start Equity", "1000000"}, {"End Equity", "955700.5"}, {"Net Profit", "-4.430%"}, {"Sharpe Ratio", "-31.63"}, {"Sortino Ratio", "-31.63"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "83%"}, {"Win Rate", "17%"}, {"Profit-Loss Ratio", "0.65"}, {"Alpha", "-3.065"}, {"Beta", "0.128"}, {"Annual Standard Deviation", "0.031"}, {"Annual Variance", "0.001"}, {"Information Ratio", "-81.232"}, {"Tracking Error", "0.212"}, {"Treynor Ratio", "-7.677"}, {"Total Fees", "$6237.00"}, {"Estimated Strategy Capacity", "$14000.00"}, {"Lowest Capacity Asset", "GC VOFJUCDY9XNH"}, {"Portfolio Turnover", "9912.69%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "6e0f767a46a54365287801295cf7bb75"} }; } }