/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Risk; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// Abstract regression framework algorithm for multiple framework regression tests /// public abstract class BaseFrameworkRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { public override void Initialize() { SetStartDate(2014, 6, 1); SetEndDate(2014, 6, 30); UniverseSettings.Resolution = Resolution.Hour; UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw; var symbols = new[] { "AAPL", "AIG", "BAC", "SPY" } .Select(ticker => QuantConnect.Symbol.Create(ticker, SecurityType.Equity, Market.USA)) .ToList(); // Manually add AAPL and AIG when the algorithm starts SetUniverseSelection(new ManualUniverseSelectionModel(symbols.Take(2))); // At midnight, add all securities every day except on the last data // With this procedure, the Alpha Model will experience multiple universe changes AddUniverseSelection(new ScheduledUniverseSelectionModel( DateRules.EveryDay(), TimeRules.Midnight, dt => dt < EndDate.AddDays(-1) ? symbols : Enumerable.Empty())); SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromDays(31), 0.025, null)); SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel()); SetExecution(new ImmediateExecutionModel()); SetRiskManagement(new NullRiskManagementModel()); } public override void OnEndOfAlgorithm() { // The base implementation checks for active insights var insightsCount = Insights.GetInsights(insight => insight.IsActive(UtcTime)).Count; if (insightsCount != 0) { throw new RegressionTestException($"The number of active insights should be 0. Actual: {insightsCount}"); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public virtual List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public virtual long DataPoints => 765; /// /// Data Points count of the algorithm history /// public virtual int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public abstract Dictionary ExpectedStatistics { get; } } }