/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Indicators; using QuantConnect.Interfaces; namespace QuantConnect.Algorithm.CSharp { /// /// Algorithm which reproduces GH issue 3861, where in some cases 2 consolidators were added when /// using the automatic indicator warmup feature /// public class AutomaticIndicatorWarmupRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Symbol _spy; public override void Initialize() { SetStartDate(2013, 10, 07); SetEndDate(2013, 10, 11); Settings.AutomaticIndicatorWarmUp = true; // Test case 1 _spy = AddEquity("SPY").Symbol; var sma = SMA(_spy, 10); if (!sma.IsReady) { throw new RegressionTestException("Expected SMA to be warmed up"); } // Test case 2 var indicator = new CustomIndicator(10); RegisterIndicator(_spy, indicator, Resolution.Minute, (Func) null); if (indicator.IsReady) { throw new RegressionTestException("Expected CustomIndicator Not to be warmed up"); } WarmUpIndicator(_spy, indicator); if (!indicator.IsReady) { throw new RegressionTestException("Expected CustomIndicator to be warmed up"); } } /// /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// /// Slice object keyed by symbol containing the stock data public override void OnData(Slice slice) { if (!Portfolio.Invested) { var subscription = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(_spy).First(config => config.TickType == TickType.Trade); // we expect 1 consolidator per indicator if (subscription.Consolidators.Count != 2) { throw new RegressionTestException($"Unexpected consolidator count for subscription: {subscription.Consolidators.Count}"); } SetHoldings(_spy, 1); } } private class CustomIndicator : SimpleMovingAverage { private IndicatorDataPoint _previous; public CustomIndicator(int period) : base(period) { } protected override decimal ComputeNextValue(IReadOnlyWindow window, IndicatorDataPoint input) { if (_previous != null && input.EndTime == _previous.EndTime) { throw new RegressionTestException($"Unexpected indicator double data point call: {_previous}"); } _previous = input; return base.ComputeNextValue(window, input); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 3943; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 40; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "1"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "271.453%"}, {"Drawdown", "2.200%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "101691.92"}, {"Net Profit", "1.692%"}, {"Sharpe Ratio", "8.854"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "67.609%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "-0.005"}, {"Beta", "0.996"}, {"Annual Standard Deviation", "0.222"}, {"Annual Variance", "0.049"}, {"Information Ratio", "-14.565"}, {"Tracking Error", "0.001"}, {"Treynor Ratio", "1.97"}, {"Total Fees", "$3.44"}, {"Estimated Strategy Capacity", "$56000000.00"}, {"Lowest Capacity Asset", "SPY R735QTJ8XC9X"}, {"Portfolio Turnover", "19.93%"}, {"Drawdown Recovery", "3"}, {"OrderListHash", "3da9fa60bf95b9ed148b95e02e0cfc9e"} }; } }