/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Algorithm which reproduces GH issue 3861, where in some cases 2 consolidators were added when
/// using the automatic indicator warmup feature
///
public class AutomaticIndicatorWarmupRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _spy;
public override void Initialize()
{
SetStartDate(2013, 10, 07);
SetEndDate(2013, 10, 11);
Settings.AutomaticIndicatorWarmUp = true;
// Test case 1
_spy = AddEquity("SPY").Symbol;
var sma = SMA(_spy, 10);
if (!sma.IsReady)
{
throw new RegressionTestException("Expected SMA to be warmed up");
}
// Test case 2
var indicator = new CustomIndicator(10);
RegisterIndicator(_spy, indicator, Resolution.Minute, (Func) null);
if (indicator.IsReady)
{
throw new RegressionTestException("Expected CustomIndicator Not to be warmed up");
}
WarmUpIndicator(_spy, indicator);
if (!indicator.IsReady)
{
throw new RegressionTestException("Expected CustomIndicator to be warmed up");
}
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
var subscription = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(_spy).First(config => config.TickType == TickType.Trade);
// we expect 1 consolidator per indicator
if (subscription.Consolidators.Count != 2)
{
throw new RegressionTestException($"Unexpected consolidator count for subscription: {subscription.Consolidators.Count}");
}
SetHoldings(_spy, 1);
}
}
private class CustomIndicator : SimpleMovingAverage
{
private IndicatorDataPoint _previous;
public CustomIndicator(int period) : base(period)
{
}
protected override decimal ComputeNextValue(IReadOnlyWindow window, IndicatorDataPoint input)
{
if (_previous != null && input.EndTime == _previous.EndTime)
{
throw new RegressionTestException($"Unexpected indicator double data point call: {_previous}");
}
_previous = input;
return base.ComputeNextValue(window, input);
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 3943;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 40;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "271.453%"},
{"Drawdown", "2.200%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "101691.92"},
{"Net Profit", "1.692%"},
{"Sharpe Ratio", "8.854"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "67.609%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-0.005"},
{"Beta", "0.996"},
{"Annual Standard Deviation", "0.222"},
{"Annual Variance", "0.049"},
{"Information Ratio", "-14.565"},
{"Tracking Error", "0.001"},
{"Treynor Ratio", "1.97"},
{"Total Fees", "$3.44"},
{"Estimated Strategy Capacity", "$56000000.00"},
{"Lowest Capacity Asset", "SPY R735QTJ8XC9X"},
{"Portfolio Turnover", "19.93%"},
{"Drawdown Recovery", "3"},
{"OrderListHash", "3da9fa60bf95b9ed148b95e02e0cfc9e"}
};
}
}