/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using QuantConnect.Indicators; using QuantConnect.Interfaces; using System.Collections.Generic; namespace QuantConnect.Algorithm.CSharp { /// /// Regression algorithm asserting the behavior of the AutomaticIndicatorWarmUp on option greeks /// public class AutomaticIndicatorWarmupOptionIndicatorsMirrorContractsRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { public override void Initialize() { SetStartDate(2015, 12, 24); SetEndDate(2015, 12, 24); Settings.AutomaticIndicatorWarmUp = true; var underlying = "GOOG"; var resolution = Resolution.Minute; var expiration = new DateTime(2015, 12, 24); var strike = 650m; var equity = AddEquity(underlying, resolution).Symbol; var option = QuantConnect.Symbol.CreateOption(underlying, Market.USA, OptionStyle.American, OptionRight.Put, strike, expiration); AddOptionContract(option, resolution); // add the call counter side of the mirrored pair var mirrorOption = QuantConnect.Symbol.CreateOption(underlying, Market.USA, OptionStyle.American, OptionRight.Call, strike, expiration); AddOptionContract(mirrorOption, resolution); var impliedVolatility = IV(option, mirrorOption); var delta = D(option, mirrorOption, optionModel: OptionPricingModelType.BinomialCoxRossRubinstein, ivModel: OptionPricingModelType.BlackScholes); var gamma = G(option, mirrorOption, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes); var vega = V(option, mirrorOption, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes); var theta = T(option, mirrorOption, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes); var rho = R(option, mirrorOption, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes); if (impliedVolatility == 0m || delta == 0m || gamma == 0m || vega == 0m || theta == 0m || rho == 0m) { throw new RegressionTestException("Expected IV/greeks calculated"); } if (!impliedVolatility.IsReady || !delta.IsReady || !gamma.IsReady || !vega.IsReady || !theta.IsReady || !rho.IsReady) { throw new RegressionTestException("Expected IV/greeks to be ready"); } Quit($"Implied Volatility: {impliedVolatility}, Delta: {delta}, Gamma: {gamma}, Vega: {vega}, Theta: {theta}, Rho: {rho}"); } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally => true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 0; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 18; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "0"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "0%"}, {"Drawdown", "0%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "100000"}, {"Net Profit", "0%"}, {"Sharpe Ratio", "0"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0"}, {"Beta", "0"}, {"Annual Standard Deviation", "0"}, {"Annual Variance", "0"}, {"Information Ratio", "0"}, {"Tracking Error", "0"}, {"Treynor Ratio", "0"}, {"Total Fees", "$0.00"}, {"Estimated Strategy Capacity", "$0"}, {"Lowest Capacity Asset", ""}, {"Portfolio Turnover", "0%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"} }; } }