/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
using System.Collections.Generic;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression algorithm asserting the behavior of the AutomaticIndicatorWarmUp on option greeks
///
public class AutomaticIndicatorWarmupOptionIndicatorsMirrorContractsRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
public override void Initialize()
{
SetStartDate(2015, 12, 24);
SetEndDate(2015, 12, 24);
Settings.AutomaticIndicatorWarmUp = true;
var underlying = "GOOG";
var resolution = Resolution.Minute;
var expiration = new DateTime(2015, 12, 24);
var strike = 650m;
var equity = AddEquity(underlying, resolution).Symbol;
var option = QuantConnect.Symbol.CreateOption(underlying, Market.USA, OptionStyle.American, OptionRight.Put, strike, expiration);
AddOptionContract(option, resolution);
// add the call counter side of the mirrored pair
var mirrorOption = QuantConnect.Symbol.CreateOption(underlying, Market.USA, OptionStyle.American, OptionRight.Call, strike, expiration);
AddOptionContract(mirrorOption, resolution);
var impliedVolatility = IV(option, mirrorOption);
var delta = D(option, mirrorOption, optionModel: OptionPricingModelType.BinomialCoxRossRubinstein, ivModel: OptionPricingModelType.BlackScholes);
var gamma = G(option, mirrorOption, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes);
var vega = V(option, mirrorOption, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes);
var theta = T(option, mirrorOption, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes);
var rho = R(option, mirrorOption, optionModel: OptionPricingModelType.ForwardTree, ivModel: OptionPricingModelType.BlackScholes);
if (impliedVolatility == 0m || delta == 0m || gamma == 0m || vega == 0m || theta == 0m || rho == 0m)
{
throw new RegressionTestException("Expected IV/greeks calculated");
}
if (!impliedVolatility.IsReady || !delta.IsReady || !gamma.IsReady || !vega.IsReady || !theta.IsReady || !rho.IsReady)
{
throw new RegressionTestException("Expected IV/greeks to be ready");
}
Quit($"Implied Volatility: {impliedVolatility}, Delta: {delta}, Gamma: {gamma}, Vega: {vega}, Theta: {theta}, Rho: {rho}");
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally => true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 0;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 18;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100000"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", ""},
{"Portfolio Turnover", "0%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}