/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
using QuantConnect.Securities;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Algorithm which tests indicator warm up using different data types, related to GH issue 4205
///
public class AutomaticIndicatorWarmupDataTypeRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _symbol;
public override void Initialize()
{
UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw;
Settings.AutomaticIndicatorWarmUp = true;
SetStartDate(2013, 10, 08);
SetEndDate(2013, 10, 10);
var SP500 = QuantConnect.Symbol.Create(Futures.Indices.SP500EMini, SecurityType.Future, Market.CME);
_symbol = FuturesChain(SP500).First();
// Test case: custom IndicatorBase indicator using Future unsubscribed symbol
var indicator1 = new CustomIndicator();
AssertIndicatorState(indicator1, isReady: false);
WarmUpIndicator(_symbol, indicator1);
AssertIndicatorState(indicator1, isReady: true);
// Test case: SimpleMovingAverage using Future unsubscribed symbol (should use TradeBar)
var sma1 = new SimpleMovingAverage(10);
AssertIndicatorState(sma1, isReady: false);
WarmUpIndicator(_symbol, sma1);
AssertIndicatorState(sma1, isReady: true);
// Test case: SimpleMovingAverage using Equity unsubscribed symbol
var spy = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA);
var sma = new SimpleMovingAverage(10);
AssertIndicatorState(sma, isReady: false);
WarmUpIndicator(spy, sma);
AssertIndicatorState(sma, isReady: true);
// We add the symbol
AddFutureContract(_symbol);
AddEquity("SPY");
// force spy for use Raw data mode so that it matches the used when unsubscribed which uses the universe settings
SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(spy).SetDataNormalizationMode(DataNormalizationMode.Raw);
// Test case: custom IndicatorBase indicator using Future subscribed symbol
var indicator = new CustomIndicator();
var consolidator = CreateConsolidator(TimeSpan.FromMinutes(2), typeof(QuoteBar));
RegisterIndicator(_symbol, indicator, consolidator);
AssertIndicatorState(indicator, isReady: false);
WarmUpIndicator(_symbol, indicator);
AssertIndicatorState(indicator, isReady: true);
// Test case: SimpleMovingAverage using Future Subscribed symbol (should use TradeBar)
var sma11 = new SimpleMovingAverage(10);
AssertIndicatorState(sma11, isReady: false);
WarmUpIndicator(_symbol, sma11);
AssertIndicatorState(sma11, isReady: true);
if (!sma11.Current.Equals(sma1.Current))
{
throw new RegressionTestException("Expected SMAs warmed up before and after adding the Future to the algorithm to have the same current value. " +
"The result of 'WarmUpIndicator' shouldn't change if the symbol is or isn't subscribed");
}
// Test case: SimpleMovingAverage using Equity unsubscribed symbol
var smaSpy = new SimpleMovingAverage(10);
AssertIndicatorState(smaSpy, isReady: false);
WarmUpIndicator(spy, smaSpy);
AssertIndicatorState(smaSpy, isReady: true);
if (!smaSpy.Current.Equals(sma.Current))
{
throw new RegressionTestException("Expected SMAs warmed up before and after adding the Equity to the algorithm to have the same current value. " +
"The result of 'WarmUpIndicator' shouldn't change if the symbol is or isn't subscribed");
}
}
private void AssertIndicatorState(IIndicator indicator, bool isReady)
{
if (indicator.IsReady != isReady)
{
throw new RegressionTestException($"Expected indicator state, expected {isReady} but was {indicator.IsReady}");
}
}
///
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
///
/// Slice object keyed by symbol containing the stock data
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
SetHoldings(_symbol, 0.5);
}
}
private class CustomIndicator : IndicatorBase, IIndicatorWarmUpPeriodProvider
{
private bool _isReady;
public int WarmUpPeriod => 1;
public override bool IsReady => _isReady;
public CustomIndicator() : base("Pepe")
{ }
protected override decimal ComputeNextValue(QuoteBar input)
{
_isReady = true;
return input.Ask.High;
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 6426;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 85;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "733913.744%"},
{"Drawdown", "15.900%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "106827.7"},
{"Net Profit", "6.828%"},
{"Sharpe Ratio", "203744786353.299"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "456382350698.622"},
{"Beta", "9.229"},
{"Annual Standard Deviation", "2.24"},
{"Annual Variance", "5.017"},
{"Information Ratio", "228504036840.953"},
{"Tracking Error", "1.997"},
{"Treynor Ratio", "49450701625.717"},
{"Total Fees", "$23.65"},
{"Estimated Strategy Capacity", "$200000000.00"},
{"Lowest Capacity Asset", "ES VMKLFZIH2MTD"},
{"Portfolio Turnover", "351.80%"},
{"Drawdown Recovery", "1"},
{"OrderListHash", "dfd9a280d3c6470b305c03e0b72c234e"}
};
}
}