/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Brokerages;
using QuantConnect.Securities;
using QuantConnect.Data;
using QuantConnect.Data.Shortable;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;
using System.IO;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Tests filtering in coarse selection by shortable quantity
///
public class AllShortableSymbolsCoarseSelectionRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private static readonly DateTime _20140325 = new DateTime(2014, 3, 25);
private static readonly DateTime _20140326 = new DateTime(2014, 3, 26);
private static readonly DateTime _20140327 = new DateTime(2014, 3, 27);
private static readonly DateTime _20140328 = new DateTime(2014, 3, 28);
private static readonly DateTime _20140329 = new DateTime(2014, 3, 29);
private static readonly Symbol _aapl = QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA);
private static readonly Symbol _bac = QuantConnect.Symbol.Create("BAC", SecurityType.Equity, Market.USA);
private static readonly Symbol _gme = QuantConnect.Symbol.Create("GME", SecurityType.Equity, Market.USA);
private static readonly Symbol _goog = QuantConnect.Symbol.Create("GOOG", SecurityType.Equity, Market.USA);
private static readonly Symbol _qqq = QuantConnect.Symbol.Create("QQQ", SecurityType.Equity, Market.USA);
private static readonly Symbol _spy = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA);
private DateTime _lastTradeDate;
private static readonly Dictionary _coarseSelected = new Dictionary
{
{ _20140325, false },
{ _20140326, false },
{ _20140327, false },
{ _20140328, false },
};
private static readonly Dictionary _expectedSymbols = new Dictionary
{
{ _20140325, new[]
{
_bac,
_qqq,
_spy
}
},
{ _20140326, new[]
{
_spy
}
},
{ _20140327, new[]
{
_aapl,
_bac,
_gme,
_qqq,
_spy,
}
},
{ _20140328, new[]
{
_goog
}
},
{ _20140329, new Symbol[0] }
};
private Security _security;
public override void Initialize()
{
SetStartDate(2014, 3, 25);
SetEndDate(2014, 3, 29);
SetCash(10000000);
_security = AddEquity(_spy);
_security.SetShortableProvider(new RegressionTestShortableProvider());
AddUniverse(CoarseSelection);
UniverseSettings.Resolution = Resolution.Daily;
SetBrokerageModel(new AllShortableSymbolsRegressionAlgorithmBrokerageModel());
}
public override void OnData(Slice slice)
{
if (Time.Date == _lastTradeDate)
{
return;
}
foreach (var (symbol, security) in ActiveSecurities.Where(kvp => !kvp.Value.Invested).OrderBy(kvp => kvp.Key))
{
var shortableQuantity = security.ShortableProvider.ShortableQuantity(symbol, Time);
if (shortableQuantity == null)
{
throw new RegressionTestException($"Expected {symbol} to be shortable on {Time:yyyy-MM-dd}");
}
// Buy at least once into all Symbols. Since daily data will always use
// MOO orders, it makes the testing of liquidating buying into Symbols difficult.
MarketOrder(symbol, -(decimal)shortableQuantity);
_lastTradeDate = Time.Date;
}
}
private IEnumerable CoarseSelection(IEnumerable coarse)
{
var shortableSymbols = (_security.ShortableProvider as dynamic).AllShortableSymbols(Time);
var selectedSymbols = coarse
.Select(x => x.Symbol)
.Where(s => shortableSymbols.ContainsKey(s) && shortableSymbols[s] >= 500)
.OrderBy(s => s)
.ToList();
var expectedMissing = 0;
if (Time.Date == _20140327)
{
var gme = QuantConnect.Symbol.Create("GME", SecurityType.Equity, Market.USA);
if (!shortableSymbols.ContainsKey(gme))
{
throw new RegressionTestException("Expected unmapped GME in shortable symbols list on 2014-03-27");
}
if (!coarse.Select(x => x.Symbol.Value).Contains("GME"))
{
throw new RegressionTestException("Expected mapped GME in coarse symbols on 2014-03-27");
}
expectedMissing = 1;
}
var missing = _expectedSymbols[Time.Date].Except(selectedSymbols).ToList();
if (missing.Count != expectedMissing)
{
throw new RegressionTestException($"Expected Symbols selected on {Time.Date:yyyy-MM-dd} to match expected Symbols, but the following Symbols were missing: {string.Join(", ", missing.Select(s => s.ToString()))}");
}
_coarseSelected[Time.Date] = true;
return selectedSymbols;
}
public override void OnEndOfAlgorithm()
{
if (!_coarseSelected.Values.All(x => x))
{
throw new AggregateException($"Expected coarse selection on all dates, but didn't run on: {string.Join(", ", _coarseSelected.Where(kvp => !kvp.Value).Select(kvp => kvp.Key.ToStringInvariant("yyyy-MM-dd")))}");
}
}
private class AllShortableSymbolsRegressionAlgorithmBrokerageModel : DefaultBrokerageModel
{
public AllShortableSymbolsRegressionAlgorithmBrokerageModel() : base()
{
}
public override IShortableProvider GetShortableProvider(Security security)
{
return new RegressionTestShortableProvider();
}
}
private class RegressionTestShortableProvider : LocalDiskShortableProvider
{
public RegressionTestShortableProvider() : base("testbrokerage")
{
}
///
/// Gets a list of all shortable Symbols, including the quantity shortable as a Dictionary.
///
/// The algorithm's local time
/// Symbol/quantity shortable as a Dictionary. Returns null if no entry data exists for this date or brokerage
public Dictionary AllShortableSymbols(DateTime localTime)
{
var shortableDataDirectory = Path.Combine(Globals.DataFolder, SecurityType.Equity.SecurityTypeToLower(), Market.USA, "shortable", Brokerage);
var allSymbols = new Dictionary();
// Check backwards up to one week to see if we can source a previous file.
// If not, then we return a list of all Symbols with quantity set to zero.
var i = 0;
while (i <= 7)
{
var shortableListFile = Path.Combine(shortableDataDirectory, "dates", $"{localTime.AddDays(-i):yyyyMMdd}.csv");
foreach (var line in DataProvider.ReadLines(shortableListFile))
{
var csv = line.Split(',');
var ticker = csv[0];
var symbol = new Symbol(
SecurityIdentifier.GenerateEquity(ticker, QuantConnect.Market.USA,
mappingResolveDate: localTime), ticker);
var quantity = Parse.Long(csv[1]);
allSymbols[symbol] = quantity;
}
if (allSymbols.Count > 0)
{
return allSymbols;
}
i++;
}
// Return our empty dictionary if we did not find a file to extract
return allSymbols;
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public List Languages { get; } = new() { Language.CSharp, Language.Python };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 36573;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 0;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "8"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "11.027%"},
{"Drawdown", "0.000%"},
{"Expectancy", "0"},
{"Start Equity", "10000000"},
{"End Equity", "10011469.88"},
{"Net Profit", "0.115%"},
{"Sharpe Ratio", "11.963"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.07"},
{"Beta", "-0.077"},
{"Annual Standard Deviation", "0.008"},
{"Annual Variance", "0"},
{"Information Ratio", "3.876"},
{"Tracking Error", "0.105"},
{"Treynor Ratio", "-1.215"},
{"Total Fees", "$282.50"},
{"Estimated Strategy Capacity", "$61000000000.00"},
{"Lowest Capacity Asset", "NB R735QTJ8XC9X"},
{"Portfolio Turnover", "3.62%"},
{"Drawdown Recovery", "0"},
{"OrderListHash", "0ea806c53bfa2bdca2504ba7155ef130"}
};
}
}