/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Brokerages; using QuantConnect.Securities; using QuantConnect.Data; using QuantConnect.Data.Shortable; using QuantConnect.Data.UniverseSelection; using QuantConnect.Interfaces; using System.IO; namespace QuantConnect.Algorithm.CSharp { /// /// Tests filtering in coarse selection by shortable quantity /// public class AllShortableSymbolsCoarseSelectionRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private static readonly DateTime _20140325 = new DateTime(2014, 3, 25); private static readonly DateTime _20140326 = new DateTime(2014, 3, 26); private static readonly DateTime _20140327 = new DateTime(2014, 3, 27); private static readonly DateTime _20140328 = new DateTime(2014, 3, 28); private static readonly DateTime _20140329 = new DateTime(2014, 3, 29); private static readonly Symbol _aapl = QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA); private static readonly Symbol _bac = QuantConnect.Symbol.Create("BAC", SecurityType.Equity, Market.USA); private static readonly Symbol _gme = QuantConnect.Symbol.Create("GME", SecurityType.Equity, Market.USA); private static readonly Symbol _goog = QuantConnect.Symbol.Create("GOOG", SecurityType.Equity, Market.USA); private static readonly Symbol _qqq = QuantConnect.Symbol.Create("QQQ", SecurityType.Equity, Market.USA); private static readonly Symbol _spy = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA); private DateTime _lastTradeDate; private static readonly Dictionary _coarseSelected = new Dictionary { { _20140325, false }, { _20140326, false }, { _20140327, false }, { _20140328, false }, }; private static readonly Dictionary _expectedSymbols = new Dictionary { { _20140325, new[] { _bac, _qqq, _spy } }, { _20140326, new[] { _spy } }, { _20140327, new[] { _aapl, _bac, _gme, _qqq, _spy, } }, { _20140328, new[] { _goog } }, { _20140329, new Symbol[0] } }; private Security _security; public override void Initialize() { SetStartDate(2014, 3, 25); SetEndDate(2014, 3, 29); SetCash(10000000); _security = AddEquity(_spy); _security.SetShortableProvider(new RegressionTestShortableProvider()); AddUniverse(CoarseSelection); UniverseSettings.Resolution = Resolution.Daily; SetBrokerageModel(new AllShortableSymbolsRegressionAlgorithmBrokerageModel()); } public override void OnData(Slice slice) { if (Time.Date == _lastTradeDate) { return; } foreach (var (symbol, security) in ActiveSecurities.Where(kvp => !kvp.Value.Invested).OrderBy(kvp => kvp.Key)) { var shortableQuantity = security.ShortableProvider.ShortableQuantity(symbol, Time); if (shortableQuantity == null) { throw new RegressionTestException($"Expected {symbol} to be shortable on {Time:yyyy-MM-dd}"); } // Buy at least once into all Symbols. Since daily data will always use // MOO orders, it makes the testing of liquidating buying into Symbols difficult. MarketOrder(symbol, -(decimal)shortableQuantity); _lastTradeDate = Time.Date; } } private IEnumerable CoarseSelection(IEnumerable coarse) { var shortableSymbols = (_security.ShortableProvider as dynamic).AllShortableSymbols(Time); var selectedSymbols = coarse .Select(x => x.Symbol) .Where(s => shortableSymbols.ContainsKey(s) && shortableSymbols[s] >= 500) .OrderBy(s => s) .ToList(); var expectedMissing = 0; if (Time.Date == _20140327) { var gme = QuantConnect.Symbol.Create("GME", SecurityType.Equity, Market.USA); if (!shortableSymbols.ContainsKey(gme)) { throw new RegressionTestException("Expected unmapped GME in shortable symbols list on 2014-03-27"); } if (!coarse.Select(x => x.Symbol.Value).Contains("GME")) { throw new RegressionTestException("Expected mapped GME in coarse symbols on 2014-03-27"); } expectedMissing = 1; } var missing = _expectedSymbols[Time.Date].Except(selectedSymbols).ToList(); if (missing.Count != expectedMissing) { throw new RegressionTestException($"Expected Symbols selected on {Time.Date:yyyy-MM-dd} to match expected Symbols, but the following Symbols were missing: {string.Join(", ", missing.Select(s => s.ToString()))}"); } _coarseSelected[Time.Date] = true; return selectedSymbols; } public override void OnEndOfAlgorithm() { if (!_coarseSelected.Values.All(x => x)) { throw new AggregateException($"Expected coarse selection on all dates, but didn't run on: {string.Join(", ", _coarseSelected.Where(kvp => !kvp.Value).Select(kvp => kvp.Key.ToStringInvariant("yyyy-MM-dd")))}"); } } private class AllShortableSymbolsRegressionAlgorithmBrokerageModel : DefaultBrokerageModel { public AllShortableSymbolsRegressionAlgorithmBrokerageModel() : base() { } public override IShortableProvider GetShortableProvider(Security security) { return new RegressionTestShortableProvider(); } } private class RegressionTestShortableProvider : LocalDiskShortableProvider { public RegressionTestShortableProvider() : base("testbrokerage") { } /// /// Gets a list of all shortable Symbols, including the quantity shortable as a Dictionary. /// /// The algorithm's local time /// Symbol/quantity shortable as a Dictionary. Returns null if no entry data exists for this date or brokerage public Dictionary AllShortableSymbols(DateTime localTime) { var shortableDataDirectory = Path.Combine(Globals.DataFolder, SecurityType.Equity.SecurityTypeToLower(), Market.USA, "shortable", Brokerage); var allSymbols = new Dictionary(); // Check backwards up to one week to see if we can source a previous file. // If not, then we return a list of all Symbols with quantity set to zero. var i = 0; while (i <= 7) { var shortableListFile = Path.Combine(shortableDataDirectory, "dates", $"{localTime.AddDays(-i):yyyyMMdd}.csv"); foreach (var line in DataProvider.ReadLines(shortableListFile)) { var csv = line.Split(','); var ticker = csv[0]; var symbol = new Symbol( SecurityIdentifier.GenerateEquity(ticker, QuantConnect.Market.USA, mappingResolveDate: localTime), ticker); var quantity = Parse.Long(csv[1]); allSymbols[symbol] = quantity; } if (allSymbols.Count > 0) { return allSymbols; } i++; } // Return our empty dictionary if we did not find a file to extract return allSymbols; } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 36573; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 0; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "8"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "11.027%"}, {"Drawdown", "0.000%"}, {"Expectancy", "0"}, {"Start Equity", "10000000"}, {"End Equity", "10011469.88"}, {"Net Profit", "0.115%"}, {"Sharpe Ratio", "11.963"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0.07"}, {"Beta", "-0.077"}, {"Annual Standard Deviation", "0.008"}, {"Annual Variance", "0"}, {"Information Ratio", "3.876"}, {"Tracking Error", "0.105"}, {"Treynor Ratio", "-1.215"}, {"Total Fees", "$282.50"}, {"Estimated Strategy Capacity", "$61000000000.00"}, {"Lowest Capacity Asset", "NB R735QTJ8XC9X"}, {"Portfolio Turnover", "3.62%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "0ea806c53bfa2bdca2504ba7155ef130"} }; } }