/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using QuantConnect.Data; using QuantConnect.Interfaces; using QuantConnect.Securities; using System.Collections.Generic; using System.Linq; namespace QuantConnect.Algorithm.CSharp { /// /// This regression algorithm tests we can add future option contracts from contracts in the future chain /// public class AddFutureOptionContractFromFutureChainRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private bool _addedOptions; public override void Initialize() { SetStartDate(2020, 1, 4); SetEndDate(2020, 1, 6); var es = AddFuture(Futures.Indices.SP500EMini, Resolution.Minute, Market.CME); es.SetFilter((futureFilter) => { return futureFilter.Expiration(0, 365).ExpirationCycle(new[] { 3, 6 }); }); } public override void OnData(Slice slice) { if (!_addedOptions) { _addedOptions = true; foreach (var futuresContracts in slice.FutureChains.Values) { foreach (var contract in futuresContracts) { var option_contract_symbols = OptionChain(contract.Symbol).ToList(); if(option_contract_symbols.Count == 0) { continue; } foreach (var option_contract_symbol in option_contract_symbols.OrderBy(x => x.ID.Date) .ThenBy(x => x.ID.StrikePrice) .ThenBy(x => x.ID.OptionRight).Take(5)) { AddOptionContract(option_contract_symbol); } } } } if (Portfolio.Invested) { return; } foreach (var chain in slice.OptionChains.Values) { foreach (var option in chain.Contracts.Keys) { MarketOrder(option, 1); MarketOrder(option.Underlying, 1); } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 9922; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 2; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "20"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "88398927.578%"}, {"Drawdown", "5.200%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "111911.55"}, {"Net Profit", "11.912%"}, {"Sharpe Ratio", "1604181.904"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "0%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "2144882.02"}, {"Beta", "31.223"}, {"Annual Standard Deviation", "1.337"}, {"Annual Variance", "1.788"}, {"Information Ratio", "1657259.526"}, {"Tracking Error", "1.294"}, {"Treynor Ratio", "68696.045"}, {"Total Fees", "$35.70"}, {"Estimated Strategy Capacity", "$2600000.00"}, {"Lowest Capacity Asset", "ES 31C3JQS9D84PW|ES XCZJLC9NOB29"}, {"Portfolio Turnover", "495.15%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "85257286f088992d599c1ad0799a6237"} }; } }