/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Linq; using QuantConnect.Data; using QuantConnect.Data.Market; using QuantConnect.Interfaces; using QuantConnect.Securities; namespace QuantConnect.Algorithm.CSharp { /// /// This regression algorithm tests that we receive the expected data when /// we add future option contracts individually using /// public class AddFutureOptionContractDataStreamingRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private bool _onDataReached; private bool _invested; private Symbol _es20h20; private Symbol _es19m20; private readonly HashSet _symbolsReceived = new HashSet(); private readonly HashSet _expectedSymbolsReceived = new HashSet(); private readonly Dictionary> _dataReceived = new Dictionary>(); public override void Initialize() { SetStartDate(2020, 1, 4); SetEndDate(2020, 1, 8); _es20h20 = AddFutureContract( QuantConnect.Symbol.CreateFuture(Futures.Indices.SP500EMini, Market.CME, new DateTime(2020, 3, 20)), Resolution.Minute).Symbol; _es19m20 = AddFutureContract( QuantConnect.Symbol.CreateFuture(Futures.Indices.SP500EMini, Market.CME, new DateTime(2020, 6, 19)), Resolution.Minute).Symbol; // Get option contract lists for 2020/01/05 (Time.AddDays(1)) because Lean has local data for that date var optionChains = OptionChainProvider.GetOptionContractList(_es20h20, Time.AddDays(1)) .Concat(OptionChainProvider.GetOptionContractList(_es19m20, Time.AddDays(1))); foreach (var optionContract in optionChains) { _expectedSymbolsReceived.Add(AddFutureOptionContract(optionContract, Resolution.Minute).Symbol); } if (_expectedSymbolsReceived.Count == 0) { throw new InvalidOperationException("Expected Symbols receive count is 0, expected >0"); } } public override void OnData(Slice slice) { if (!slice.HasData) { return; } _onDataReached = true; var hasOptionQuoteBars = false; foreach (var qb in slice.QuoteBars.Values) { if (qb.Symbol.SecurityType != SecurityType.FutureOption) { continue; } hasOptionQuoteBars = true; _symbolsReceived.Add(qb.Symbol); if (!_dataReceived.ContainsKey(qb.Symbol)) { _dataReceived[qb.Symbol] = new List(); } _dataReceived[qb.Symbol].Add(qb); } if (_invested || !hasOptionQuoteBars) { return; } if (slice.ContainsKey(_es20h20) && slice.ContainsKey(_es19m20)) { SetHoldings(_es20h20, 0.2); SetHoldings(_es19m20, 0.2); _invested = true; } } public override void OnEndOfAlgorithm() { base.OnEndOfAlgorithm(); if (!_onDataReached) { throw new RegressionTestException("OnData() was never called."); } if (_symbolsReceived.Count != _expectedSymbolsReceived.Count) { throw new AggregateException($"Expected {_expectedSymbolsReceived.Count} option contracts Symbols, found {_symbolsReceived.Count}"); } var missingSymbols = new List(); foreach (var expectedSymbol in _expectedSymbolsReceived) { if (!_symbolsReceived.Contains(expectedSymbol)) { missingSymbols.Add(expectedSymbol); } } if (missingSymbols.Count > 0) { throw new RegressionTestException($"Symbols: \"{string.Join(", ", missingSymbols)}\" were not found in OnData"); } foreach (var expectedSymbol in _expectedSymbolsReceived) { var data = _dataReceived[expectedSymbol]; var nonDupeDataCount = data.Select(x => { x.EndTime = default(DateTime); return x; }).Distinct().Count(); if (nonDupeDataCount < 1000) { throw new RegressionTestException($"Received too few data points. Expected >=1000, found {nonDupeDataCount} for {expectedSymbol}"); } } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public List Languages { get; } = new() { Language.CSharp, Language.Python }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 311881; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 2; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "2"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "5512.811%"}, {"Drawdown", "1.000%"}, {"Expectancy", "0"}, {"Start Equity", "100000"}, {"End Equity", "105332.8"}, {"Net Profit", "5.333%"}, {"Sharpe Ratio", "64.084"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "95.977%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "25.763"}, {"Beta", "2.914"}, {"Annual Standard Deviation", "0.423"}, {"Annual Variance", "0.179"}, {"Information Ratio", "66.11"}, {"Tracking Error", "0.403"}, {"Treynor Ratio", "9.308"}, {"Total Fees", "$8.60"}, {"Estimated Strategy Capacity", "$22000000.00"}, {"Lowest Capacity Asset", "ES XFH59UK0MYO1"}, {"Portfolio Turnover", "122.11%"}, {"Drawdown Recovery", "0"}, {"OrderListHash", "d744fa8beaa60546c84924ed68d945d9"} }; } }