/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using QuantConnect.Data; using QuantConnect.Indicators; using QuantConnect.Interfaces; using QuantConnect.Orders; namespace QuantConnect.Algorithm.CSharp { /// /// Regression test to explain how Beta indicator works /// public class AddBetaIndicatorRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition { private Beta _beta; private SimpleMovingAverage _sma; private decimal _lastSMAValue; public override void Initialize() { SetStartDate(2013, 10, 07); SetEndDate(2013, 10, 15); SetCash(10000); AddEquity("IBM"); AddEquity("SPY"); EnableAutomaticIndicatorWarmUp = true; _beta = B("IBM", "SPY", 3, Resolution.Daily); _sma = SMA("SPY", 3, Resolution.Daily); _lastSMAValue = 0; if (!_beta.IsReady) { throw new RegressionTestException("Beta indicator was expected to be ready"); } } public override void OnData(Slice slice) { if (!Portfolio.Invested) { var price = slice["IBM"].Close; Buy("IBM", 10); LimitOrder("IBM", 10, price * 0.1m); StopMarketOrder("IBM", 10, price / 0.1m); } if (_beta.Current.Value < 0m || _beta.Current.Value > 2.80m) { throw new RegressionTestException($"_beta value was expected to be between 0 and 2.80 but was {_beta.Current.Value}"); } Log($"Beta between IBM and SPY is: {_beta.Current.Value}"); } public override void OnOrderEvent(OrderEvent orderEvent) { var order = Transactions.GetOrderById(orderEvent.OrderId); var goUpwards = _lastSMAValue < _sma.Current.Value; _lastSMAValue = _sma.Current.Value; if (order.Status == OrderStatus.Filled) { if (order.Type == OrderType.Limit && Math.Abs(_beta.Current.Value - 1) < 0.2m && goUpwards) { Transactions.CancelOpenOrders(order.Symbol); } } if (order.Status == OrderStatus.Canceled) { Log(orderEvent.ToString()); } } /// /// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm. /// public bool CanRunLocally { get; } = true; /// /// This is used by the regression test system to indicate which languages this algorithm is written in. /// public virtual List Languages { get; } = new() { Language.CSharp }; /// /// Data Points count of all timeslices of algorithm /// public long DataPoints => 10977; /// /// Data Points count of the algorithm history /// public int AlgorithmHistoryDataPoints => 11; /// /// Final status of the algorithm /// public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed; /// /// This is used by the regression test system to indicate what the expected statistics are from running the algorithm /// public Dictionary ExpectedStatistics => new Dictionary { {"Total Orders", "3"}, {"Average Win", "0%"}, {"Average Loss", "0%"}, {"Compounding Annual Return", "12.939%"}, {"Drawdown", "0.300%"}, {"Expectancy", "0"}, {"Start Equity", "10000"}, {"End Equity", "10028.93"}, {"Net Profit", "0.289%"}, {"Sharpe Ratio", "3.924"}, {"Sortino Ratio", "0"}, {"Probabilistic Sharpe Ratio", "68.349%"}, {"Loss Rate", "0%"}, {"Win Rate", "0%"}, {"Profit-Loss Ratio", "0"}, {"Alpha", "0.028"}, {"Beta", "0.122"}, {"Annual Standard Deviation", "0.024"}, {"Annual Variance", "0.001"}, {"Information Ratio", "-3.181"}, {"Tracking Error", "0.142"}, {"Treynor Ratio", "0.78"}, {"Total Fees", "$1.00"}, {"Estimated Strategy Capacity", "$35000000.00"}, {"Lowest Capacity Asset", "IBM R735QTJ8XC9X"}, {"Portfolio Turnover", "1.51%"}, {"Drawdown Recovery", "2"}, {"OrderListHash", "1db1ce949db995bba20ed96ea5e2438a"} }; } }