/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using QuantConnect.Data;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
using QuantConnect.Orders;
namespace QuantConnect.Algorithm.CSharp
{
///
/// Regression test to explain how Beta indicator works
///
public class AddBetaIndicatorRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Beta _beta;
private SimpleMovingAverage _sma;
private decimal _lastSMAValue;
public override void Initialize()
{
SetStartDate(2013, 10, 07);
SetEndDate(2013, 10, 15);
SetCash(10000);
AddEquity("IBM");
AddEquity("SPY");
EnableAutomaticIndicatorWarmUp = true;
_beta = B("IBM", "SPY", 3, Resolution.Daily);
_sma = SMA("SPY", 3, Resolution.Daily);
_lastSMAValue = 0;
if (!_beta.IsReady)
{
throw new RegressionTestException("Beta indicator was expected to be ready");
}
}
public override void OnData(Slice slice)
{
if (!Portfolio.Invested)
{
var price = slice["IBM"].Close;
Buy("IBM", 10);
LimitOrder("IBM", 10, price * 0.1m);
StopMarketOrder("IBM", 10, price / 0.1m);
}
if (_beta.Current.Value < 0m || _beta.Current.Value > 2.80m)
{
throw new RegressionTestException($"_beta value was expected to be between 0 and 2.80 but was {_beta.Current.Value}");
}
Log($"Beta between IBM and SPY is: {_beta.Current.Value}");
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
var order = Transactions.GetOrderById(orderEvent.OrderId);
var goUpwards = _lastSMAValue < _sma.Current.Value;
_lastSMAValue = _sma.Current.Value;
if (order.Status == OrderStatus.Filled)
{
if (order.Type == OrderType.Limit && Math.Abs(_beta.Current.Value - 1) < 0.2m && goUpwards)
{
Transactions.CancelOpenOrders(order.Symbol);
}
}
if (order.Status == OrderStatus.Canceled)
{
Log(orderEvent.ToString());
}
}
///
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
///
public bool CanRunLocally { get; } = true;
///
/// This is used by the regression test system to indicate which languages this algorithm is written in.
///
public virtual List Languages { get; } = new() { Language.CSharp };
///
/// Data Points count of all timeslices of algorithm
///
public long DataPoints => 10977;
///
/// Data Points count of the algorithm history
///
public int AlgorithmHistoryDataPoints => 11;
///
/// Final status of the algorithm
///
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;
///
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
///
public Dictionary ExpectedStatistics => new Dictionary
{
{"Total Orders", "3"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "12.939%"},
{"Drawdown", "0.300%"},
{"Expectancy", "0"},
{"Start Equity", "10000"},
{"End Equity", "10028.93"},
{"Net Profit", "0.289%"},
{"Sharpe Ratio", "3.924"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "68.349%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.028"},
{"Beta", "0.122"},
{"Annual Standard Deviation", "0.024"},
{"Annual Variance", "0.001"},
{"Information Ratio", "-3.181"},
{"Tracking Error", "0.142"},
{"Treynor Ratio", "0.78"},
{"Total Fees", "$1.00"},
{"Estimated Strategy Capacity", "$35000000.00"},
{"Lowest Capacity Asset", "IBM R735QTJ8XC9X"},
{"Portfolio Turnover", "1.51%"},
{"Drawdown Recovery", "2"},
{"OrderListHash", "1db1ce949db995bba20ed96ea5e2438a"}
};
}
}